
A Mindtree Whitepaper

Emerging Trends in
 Multiplatform Application
Development

Emerging trends in Multi-Platform App development are gaining popularity for two reasons.
One is single code base and wider audience reach, and secondly, less development time and
effort. They are also cost-effective and provide native look across different platforms. These
trends are driving the entire software market, and it is the optimal time to consider investing in
these frameworks. There are few frameworks which serve this purpose such as Flutter, React
Native, .NET MAUI and Ionic. This article will cover the aspects of React Native and .NET MAUI.

In 2012, Facebook acquired Instagram and wanted to use React for
their timelines, which was followed by open sourcing React project.
Facebook started to develop mobile platform technology and
introduced React Native for native look and feel. In order to extend
support for Windows, Microsoft created an extension and generated
UWP template, which uses WinRT inside React Native code.

React Native

Microsoft developed VS Code with Electronjs. They observed that
electronjs requires a lot of space, since it bundles Chromium and nodejs
(for communication with host OS). In the objective of reducing the
space and increasing the efficiency, they created a small package called
“WebWindow” which uses WebView2 (web control for binding HTMl,
js, css) and ultimately resulted in better efficiency and lesser space.

The extension of this project along with migration of Xamarin Forms
into a separate framework is.NET MAUI which is the Microsoft’s
greatest focus area for the current year. It allows developers to run
application on any platform. It supports C# and XAML for UI
components.

Few developers feel difficult to code in XAML. As a solution to this problem, Microsoft has also
provided MAUI with Blazor, where developers can write code using HTML, Javascript and CSS
and render them as native application.

.NET MAUI

Key factors

1. Installation & Setup:

A React Native application is created with just two commands. Using the “expo-cli” npm
package, we can scan the QR-code and deploy the build into any physical device. This makes
development fairly faster. We can also use AVD (Android Virtual Device) configuration and
run it as an Android emulator.

The setup for .NET MAUI needs the developer to carefully follow the documentation.
Microsoft has developed a new package called “maui-check” which does all necessary
installations like Android SDK, ios SDK , Android emulator (AVD configuration) and the latest
dotnet version. We can also install the workloads separately. However, in some cases, where
the workload doesn’t install properly, manually installation is advised. Microsoft has
promised to add dependencies in the Visual Studio installation. The Visual Studio directly
runs on Android emulator connected through AVD with just one click. There is an option to
change target platform and run accordingly.

2. Documentation & Community Support:

React Native’s documentation is pretty well written which helps a developer build
applications faster. Since the Javascript world is huge, the community support for React Native
is also relatively high.

On the other hand, MAUI is still in a development stage and lacks important concepts. We need
to refer Xamarin Forms for further development guidelines. Xamarin Forms documentation is
well explained, with proper links, description for all APIs, and controls for developers to use.

3. Language & Learning Curve:

The React Native app can be developed using the most widely used programming language –
Javascript and Typescript (extended version of javascript). Since it uses JSX Javascript Syntax
Extension, which combines HTML elements with Javascript, it becomes difficult to
understand the core concepts, which makes the learning curve steep. However, the learning
curve of React Native is almost flat if the developer has hands-on experience.

.Net MAUI can be built in C# with a dotnet environment. UI elements are built using XAML
(XML-based Application Markup Language). During compilation, this XAML code is
converted to native code. The learning curve of XAML is steep. On the other hand, MAUI with
BLAZOR rescues developers by providing the facility of running the BLAZOR application in
MAUI. MAUI has BlazorWebView (A WebView control to run Blazor application) which hosts
the BLAZOR application and provides native look.

4. IDE & Debugging tools

MAUI can be developed using Visual Studio IDE. It has debugging, hot reload and various
diagnostic tools to support developers in debugging and error fixing scenarios. However,
MAUI is supported only for Windows users, and there is a cost associated with the enterprise
version of Visual Studio. Non-Windows users will not be able to explore .NET MAUI.

On the other hand, VS code becomes the first choice for React Native development. It has
minimum in-built debugging feature, and there are a few custom debugging libraries, which
can be used as primary UI tools.

5. Generated Project Structure & Memory

.Net MAUI code structure has only two folders;

 1. Main App – All the common code resides here. It has a platform folder which contains
 platform-specific configuration files.

 2. MainApp.WinUI – code specific to Windows resides here.

React Native also has a simple project structure. Platform-specific configuration and build
requirements reside in separate folders. However, the size of the project is ultimately large
than MAUI.

6. Architecture:

React Native – It has three core building blocks and follows MVVM pattern.

 1. JS Interpreter – entire Javascript code is compiled and the bundle starts when user runs
 the application.

 2. Bridge (Javascript Interface) – It is based on concept of “Shared Ownership” where
 communication between native module and UI components happen. Any user event
 that triggers native API or UI changes is given to the bridge to handle.

 3. Yoga – Facebook’s open source layout engine used to design flexible layout across
 different platforms. It calculates the layouts and their dimension for UI.

.NET MAUI – It contains two different folders; one is the main app where all the code resides
and other folder is created using WinUI for Windows application development. WinUI uses
WinRT Windows Runtime API to access all native controls. It uses Single project MSIX
packaging extension, which creates support for debugging and working with WinUI project
without using separate packaging code.

.NET MAUI with Blazor uses Microsoft.Edge.WebView2 embedded web control for binding
web technologies like HTML, CSS and JS into native apps. During compilation, the XAML
code is converted into Intermediate Language (native platform-specific code is generated)
using XAMLC.

7. Third party tool integration & Handy Solutions

React Native is an open source with lot of third-party libraries. Integration & customization to
any custom library is extremely easy. It has readily available solutions for most UI features.
.Net MAUI is relatively new, and hence, third-party library support is very less.

8. Configuration to support Windows

Since React Native is an open source, Microsoft has created an extension to support the
Windows platform. It requires a “reactive-native-Windows” NPM package, which creates a
UWP project template inside the React project. UWP (Universal Windows Platforms –
Framework to build any application on Windows) uses WinRT API for native control. We need
to download the build tools required to run Windows app.

In .Net MAUI, during installation, “maui-check” checks for platform specific SDKs and
workloads. There is no additional installation required. The project comes with Windows
support with a separate folder for Windows specific codes.

9. Security

We have to jump through a few more hoops with React Native to achieve the levels of security
that come with .NET as default. When we build a bank or financial app, due to data
confidentiality, additional security layers are required.

.Net MAUI follows Microsoft security policies which adds basic security features. However, it
is advised to configure additional security features based on the requirements.

10. Compilation

Net MAUI uses AOT Ahead of Time Complication .It compiles XAML into native
platform-specific code, which reduces load time. XAML is converted into intermediate
language (IL) using XAMLC. Blazor Application also supports AOT compilation. Hence,
compile time errors can be rectified.

React Native uses a Javascript Interpreter, where instead of compiling the source code into
native code, it takes the code to host the Javascript engine. It uses an abstraction layer called
“react-native bridge” that invokes actual rendering. Hence, the application loads slower.

11. Performance

The performance of React Native is good with few drawbacks, which can be solved by
performing small workarounds. Application load time is long due to the JS-Interpreter
compilation process. There are issues with navigations, and support for 64-bit mode on
Android is not available.

In case of .Net MAUI, it is too early to discuss the performance. MAUI can be used to build
fast loading applications with a 64-bit mode support on Android. It also provides AppShell,
which provides for boilerplate navigation components that align perfectly with Windows and
the mobile environment.

12. Code reusability across different platforms

Code reusability features are similar in both technologies. We can create any common code
and use them across your entire application. In React Native, we can create services and
inject them in any component. MAUI has a dependency injection support at the start up level.

13. Ease of writing platform specific codes

In React Native,

 1. First, we can import Platform Module and use its Platform.OS to identify the
 platform and render the logic/style based accordingly.

 2. Second, we can use Platform.Select to render component specific files.

In .Net MAUI, we have

 1. OnPlatform to execute actions based on target platform.

 2. Idiom to change the layout and functionality based on target platform.

Apart from these, few other methods such as Device.Style, Device.BackgroundColor,
Device.FlowDirections are available.

14. Deployment

Visual Studio has made the build process simple for developers. We can create deployable
bundles such as “.exe” files for Windows, “.apk” files for Android apps with one click. It is
possible to directly deploy the Windows app to local machine by using the “deploy” option on
WinUI project. We can test Android and iOS by running on emulator devices connected
through AVD.

With React Native, to build the application and package into a deployable module is a
struggle. In case of iOS, we need to install “pod” then open project in Xcode and change a few
settings, and finally choose build configuration option as “Release”. For Android, we need to
navigate to the Android folder and run “. /gradlew assembleRelease” to get the deployable
.apk package. For Windows, it is straight forward that the build process packages the
application as “exe”.

15. Native Control

React Native has fewer native controls available. In order to access hardware like the camera,
we need third party libraries and customization, which requires developer skillset on
Javascript.

On the other hand, MAUI has full hardware support using MAUI.Essentials. It provides
various APIs to work with camera, app actions, file picker, email, maps, permission,
geo location and many more.

16. User experience

React Native requires additional styling libraries like Material UI to make app features more
attractive. Though libraries provide sufficient templates, on customization, they lack a native
look of the application. It also needs lot of effort to customize available templates

.Net MAUI itself provides lot of Layouts like AppShell, StackLayout, FlexLayout, ScrollView,
Frame and Grid.
It has several view tags and cells, which makes the UI feel native on any device.

 Features React Native .Net MAUI

Evaluation

Performance

Code reusability across different platforms

Ease of writing platform specific codes

Deployment

Native control

User experience

Installation & setup

Documentation & community support

Language & learning curve

IDE & debugging tools

Generated project structure & memory

Third party tool integration & handy solutions

Configuration to support Windows

Security

Compilation

Conclusion

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company that enables enterprises across industries to drive superior
competitive advantage, customer experiences and business outcomes by harnessing digital and cloud technologies. A digital transformation partner to
more than 260 of the world’s most pioneering enterprises, Mindtree brings extensive domain, technology and consulting expertise to help reimagine
business models, accelerate innovation and maximize growth. As a socially and environmentally responsible business, Mindtree is focused on growth
as well as sustainability in building long-term stakeholder value. Powered by more than 29,700 talented and entrepreneurial professionals across
24 countries, Mindtree ― a Larsen & Toubro Group company ― is consistently recognized among the best places to work.

For more, please visit www.mindtree.com or @Mindtree_Ltd.

React Native is the best choice if you have very small & delicate UI with lot of third-party
library integrations and customization. On the other hand, .Net MAUI looks promising for a
native look and many platform-specific functionalities. It is still immature, but has the power
to affect the market.

