
Introduction
Web performance patterns provide guidance in implementing the best practices based solution.
In this white paper, we discuss the performance optimization framework to implement the
performance best practices at all the SDLC phases. We also discuss the main performance
patterns and anti-patterns.

Web Performance
Patterns

A Mindtree Whitepaper

During the design and architecture phase, we could adopt performance-based design. This
includes defining performance design principles and developing a performance checklist and
performance patterns that could be used during the development and testing phases. We will
also finalize the performance SLAs related to response time, throughput, and resource
utilization, and such. We would design performance test cases and setup optimal sized
infrastructure. Performance modeling and user load modeling of the application are done using
peak loads, peak usage hours, application usage patterns, and identifying key performance
scenarios and performance objectives and metrics.

During the development phase, a performance-based development methodology would be
adopted using iterative performance code reviews. Application code, server configurations, and
web pages would be fine-tuned from a performance standpoint. The development team would
use the performance design checklist and architecture principles defined in the design and
architecture phase. The multi-layer caching system would be developed. Asset, service and
content optimization techniques would be implemented for page modules.

Performance validation phase involves iterative performance testing and measuring all the
identified performance metrics and SLAs for end-to-end performance scenarios. We would
conduct various types of performance testing such as peak load testing, infrastructure testing,
endurance testing, infrastructure and content volume testing. During the performance testing
and analysis phase, we would identify performance bottlenecks and fine-tune components and
systems to address the bottleneck. Performance testing will be conducted on all supported
browsers and mobile devices.

In post-production phase, we would mainly conduct performance monitoring activities such as
server health check monitoring, real-time application monitoring, automated performance
testing. SLA violations will be reported and notified pro-actively to system administrators to
take corrective actions.

Horizontal components such as performance tools and accelerators would be used out in all
phases for enhanced productivity. Web performance governance would span all phases of web
performance optimization. The web performance would be optimized at various phases of the
web request processing pipeline .

Web Performance Patterns and Anti-patterns
Identify the key performance anti-patterns and address those gaps.

Web Page Design Anti Patterns

 Bad design of key pages (such as gateway pages, homepages, or landing pages) by including
numerous images, entry popups, heavy banners, banner ads, and presentation components.

 Cluttered and heavy landing pages that are not targeted for user personas and complex
page design without unified interface. Using a huge number of resource requests impacting
parallel downloads and having banner ads, entry popups, and too many calls to actions, and
clickable links in landing pages.

 The absence of real-time performance monitoring and notification infrastructure and
absence of layer-wise caching strategy.

 Using uncompressed images and scripts on the pages.

 Bad integration design

 3rd Party component integration without proper SLA framework

 Improper handling of timeouts and exceptions in the services

 Having front-end Single Point Of Failure (SPOF) such as blocking 3rd party script,

Architecture &
Design Phase

Development
Phase

Validation
Phase

Monitoring
Phase

synchronous load, delayed/long-running blocking JavaScript, in-lined font-face, in-lined scripts,
and in-lined images that prevent browser caching, edge caching, and on-demand loading and
increases load time by 16%.

 Huge white space in HTML document increases page size.

 Absence of Omni-Channel strategy

 Absence of mobility enabled sites or lack of multi-device testing

 Absence of cross-browser testing

 Absence of early and iterative performance testing

 Other common issues with page performance are as follows

 Numerous JS/CSS includes

 Duplicate calls

 Broken links

 Unnecessary calls

 Placement of JS/CSS calls

 Bloated size of web page

 Frequent resource requests with huge payload

 Inline styles and JS logic

Page Design Patterns and Best Practices
Given below are the performance best practices and performance design patterns that are
applicable in the design phase of the project:

 Avoiding extraneous content such as ads can improve the number of objects per page by
25% and improves latency by 30%.

 Adopting user-centric design approach addresses challenges related to usability,
information discovery, accessibility, task completion.

 Conducting iterative performance testing assesses the page performance across
geography and Omni-channel testing for all pages.

 Adopting user-friendly and intuitive information architecture and minimizing

 Real User
 monitoring

 Multi-geo
 monitoring

 Server heartbeat
 monitoring setup

 Notification
 setup

 Performance
 dashboard and
 reporting

 Automated
 performance test
 execution

 Principles
 Performance check
 list development

 Performance SLA &
 metrics definition

 Performance
 modeling

 Performance test
 design

 Infrastructure
 sizing & capacity
 planning

 Interface SLA
 specification

 Performance
 based code
 review

 Performance
 optimization of
 server

 Layer-wize
 caching

 Static Asset
 Optimization

 Content
 optimization

 Code
 Optimization

 Service
 Optimization

 End-to-end
 performance
 testing

 Mobile
 performance
 testing

 Performance
 profiling

 Performance
 testing
 of Integrations

 Infrastructure
 tesing

 Load/ stress/
 endurance testing

 Performance
 bottleneck testing

Performance Tools & Accelerators

Request Pipeline Optimization

Performance Governance

During the design and architecture phase, we could adopt performance-based design. This
includes defining performance design principles and developing a performance checklist and
performance patterns that could be used during the development and testing phases. We will
also finalize the performance SLAs related to response time, throughput, and resource
utilization, and such. We would design performance test cases and setup optimal sized
infrastructure. Performance modeling and user load modeling of the application are done using
peak loads, peak usage hours, application usage patterns, and identifying key performance
scenarios and performance objectives and metrics.

During the development phase, a performance-based development methodology would be
adopted using iterative performance code reviews. Application code, server configurations, and
web pages would be fine-tuned from a performance standpoint. The development team would
use the performance design checklist and architecture principles defined in the design and
architecture phase. The multi-layer caching system would be developed. Asset, service and
content optimization techniques would be implemented for page modules.

Performance validation phase involves iterative performance testing and measuring all the
identified performance metrics and SLAs for end-to-end performance scenarios. We would
conduct various types of performance testing such as peak load testing, infrastructure testing,
endurance testing, infrastructure and content volume testing. During the performance testing
and analysis phase, we would identify performance bottlenecks and fine-tune components and
systems to address the bottleneck. Performance testing will be conducted on all supported
browsers and mobile devices.

In post-production phase, we would mainly conduct performance monitoring activities such as
server health check monitoring, real-time application monitoring, automated performance
testing. SLA violations will be reported and notified pro-actively to system administrators to
take corrective actions.

Horizontal components such as performance tools and accelerators would be used out in all
phases for enhanced productivity. Web performance governance would span all phases of web
performance optimization. The web performance would be optimized at various phases of the
web request processing pipeline .

Web Performance Patterns and Anti-patterns
Identify the key performance anti-patterns and address those gaps.

Web Page Design Anti Patterns

 Bad design of key pages (such as gateway pages, homepages, or landing pages) by including
numerous images, entry popups, heavy banners, banner ads, and presentation components.

 Cluttered and heavy landing pages that are not targeted for user personas and complex
page design without unified interface. Using a huge number of resource requests impacting
parallel downloads and having banner ads, entry popups, and too many calls to actions, and
clickable links in landing pages.

 The absence of real-time performance monitoring and notification infrastructure and
absence of layer-wise caching strategy.

 Using uncompressed images and scripts on the pages.

 Bad integration design

 3rd Party component integration without proper SLA framework

 Improper handling of timeouts and exceptions in the services

 Having front-end Single Point Of Failure (SPOF) such as blocking 3rd party script,

synchronous load, delayed/long-running blocking JavaScript, in-lined font-face, in-lined scripts,
and in-lined images that prevent browser caching, edge caching, and on-demand loading and
increases load time by 16%.

 Huge white space in HTML document increases page size.

 Absence of Omni-Channel strategy

 Absence of mobility enabled sites or lack of multi-device testing

 Absence of cross-browser testing

 Absence of early and iterative performance testing

 Other common issues with page performance are as follows

 Numerous JS/CSS includes

 Duplicate calls

 Broken links

 Unnecessary calls

 Placement of JS/CSS calls

 Bloated size of web page

 Frequent resource requests with huge payload

 Inline styles and JS logic

Page Design Patterns and Best Practices
Given below are the performance best practices and performance design patterns that are
applicable in the design phase of the project:

 Avoiding extraneous content such as ads can improve the number of objects per page by
25% and improves latency by 30%.

 Adopting user-centric design approach addresses challenges related to usability,
information discovery, accessibility, task completion.

 Conducting iterative performance testing assesses the page performance across
geography and Omni-channel testing for all pages.

 Adopting user-friendly and intuitive information architecture and minimizing

During the design and architecture phase, we could adopt performance-based design. This
includes defining performance design principles and developing a performance checklist and
performance patterns that could be used during the development and testing phases. We will
also finalize the performance SLAs related to response time, throughput, and resource
utilization, and such. We would design performance test cases and setup optimal sized
infrastructure. Performance modeling and user load modeling of the application are done using
peak loads, peak usage hours, application usage patterns, and identifying key performance
scenarios and performance objectives and metrics.

During the development phase, a performance-based development methodology would be
adopted using iterative performance code reviews. Application code, server configurations, and
web pages would be fine-tuned from a performance standpoint. The development team would
use the performance design checklist and architecture principles defined in the design and
architecture phase. The multi-layer caching system would be developed. Asset, service and
content optimization techniques would be implemented for page modules.

Performance validation phase involves iterative performance testing and measuring all the
identified performance metrics and SLAs for end-to-end performance scenarios. We would
conduct various types of performance testing such as peak load testing, infrastructure testing,
endurance testing, infrastructure and content volume testing. During the performance testing
and analysis phase, we would identify performance bottlenecks and fine-tune components and
systems to address the bottleneck. Performance testing will be conducted on all supported
browsers and mobile devices.

In post-production phase, we would mainly conduct performance monitoring activities such as
server health check monitoring, real-time application monitoring, automated performance
testing. SLA violations will be reported and notified pro-actively to system administrators to
take corrective actions.

Horizontal components such as performance tools and accelerators would be used out in all
phases for enhanced productivity. Web performance governance would span all phases of web
performance optimization. The web performance would be optimized at various phases of the
web request processing pipeline .

Web Performance Patterns and Anti-patterns
Identify the key performance anti-patterns and address those gaps.

Web Page Design Anti Patterns

 Bad design of key pages (such as gateway pages, homepages, or landing pages) by including
numerous images, entry popups, heavy banners, banner ads, and presentation components.

 Cluttered and heavy landing pages that are not targeted for user personas and complex
page design without unified interface. Using a huge number of resource requests impacting
parallel downloads and having banner ads, entry popups, and too many calls to actions, and
clickable links in landing pages.

 The absence of real-time performance monitoring and notification infrastructure and
absence of layer-wise caching strategy.

 Using uncompressed images and scripts on the pages.

 Bad integration design

 3rd Party component integration without proper SLA framework

 Improper handling of timeouts and exceptions in the services

 Having front-end Single Point Of Failure (SPOF) such as blocking 3rd party script,

synchronous load, delayed/long-running blocking JavaScript, in-lined font-face, in-lined scripts,
and in-lined images that prevent browser caching, edge caching, and on-demand loading and
increases load time by 16%.

 Huge white space in HTML document increases page size.

 Absence of Omni-Channel strategy

 Absence of mobility enabled sites or lack of multi-device testing

 Absence of cross-browser testing

 Absence of early and iterative performance testing

 Other common issues with page performance are as follows

 Numerous JS/CSS includes

 Duplicate calls

 Broken links

 Unnecessary calls

 Placement of JS/CSS calls

 Bloated size of web page

 Frequent resource requests with huge payload

 Inline styles and JS logic

Page Design Patterns and Best Practices
Given below are the performance best practices and performance design patterns that are
applicable in the design phase of the project:

 Avoiding extraneous content such as ads can improve the number of objects per page by
25% and improves latency by 30%.

 Adopting user-centric design approach addresses challenges related to usability,
information discovery, accessibility, task completion.

 Conducting iterative performance testing assesses the page performance across
geography and Omni-channel testing for all pages.

 Adopting user-friendly and intuitive information architecture and minimizing

During the design and architecture phase, we could adopt performance-based design. This
includes defining performance design principles and developing a performance checklist and
performance patterns that could be used during the development and testing phases. We will
also finalize the performance SLAs related to response time, throughput, and resource
utilization, and such. We would design performance test cases and setup optimal sized
infrastructure. Performance modeling and user load modeling of the application are done using
peak loads, peak usage hours, application usage patterns, and identifying key performance
scenarios and performance objectives and metrics.

During the development phase, a performance-based development methodology would be
adopted using iterative performance code reviews. Application code, server configurations, and
web pages would be fine-tuned from a performance standpoint. The development team would
use the performance design checklist and architecture principles defined in the design and
architecture phase. The multi-layer caching system would be developed. Asset, service and
content optimization techniques would be implemented for page modules.

Performance validation phase involves iterative performance testing and measuring all the
identified performance metrics and SLAs for end-to-end performance scenarios. We would
conduct various types of performance testing such as peak load testing, infrastructure testing,
endurance testing, infrastructure and content volume testing. During the performance testing
and analysis phase, we would identify performance bottlenecks and fine-tune components and
systems to address the bottleneck. Performance testing will be conducted on all supported
browsers and mobile devices.

In post-production phase, we would mainly conduct performance monitoring activities such as
server health check monitoring, real-time application monitoring, automated performance
testing. SLA violations will be reported and notified pro-actively to system administrators to
take corrective actions.

Horizontal components such as performance tools and accelerators would be used out in all
phases for enhanced productivity. Web performance governance would span all phases of web
performance optimization. The web performance would be optimized at various phases of the
web request processing pipeline .

Web Performance Patterns and Anti-patterns
Identify the key performance anti-patterns and address those gaps.

Web Page Design Anti Patterns

 Bad design of key pages (such as gateway pages, homepages, or landing pages) by including
numerous images, entry popups, heavy banners, banner ads, and presentation components.

 Cluttered and heavy landing pages that are not targeted for user personas and complex
page design without unified interface. Using a huge number of resource requests impacting
parallel downloads and having banner ads, entry popups, and too many calls to actions, and
clickable links in landing pages.

 The absence of real-time performance monitoring and notification infrastructure and
absence of layer-wise caching strategy.

 Using uncompressed images and scripts on the pages.

 Bad integration design

 3rd Party component integration without proper SLA framework

 Improper handling of timeouts and exceptions in the services

 Having front-end Single Point Of Failure (SPOF) such as blocking 3rd party script,

pages/links needed to find the information or to reach the correct page. Create information
architecture and page flows based on user goals and personas so that users can reach the
information quickly and complete the intended task.

 Keep the key pages simple in design. This involves using only necessary UI components.
Complex page design and page cluttering should be avoided. Optimize the landing page through
techniques such as eyeball tracking, uncluttering, targeted and useful information, and A-B
Split testing/multivariate testing analysis. The right pane elements can load late as its
performance is less critical.

 Use Responsive Web Design (RWD) technique to cater to multiple devices and form
factors. RWD consists of fluid grids, media queries that can auto-adjust based on the target
device specifications. Users perceive instantaneous response time (0.1-0.2 seconds), and they
feel that that information interaction time is 1-5 seconds; hence it is important to adopt the
responsive design to create interactive and highly performing UI elements.

 Minimize page weight. Preferably the overall page size should be between 100KB and 400KB
for home pages and landing pages. Minimize session size and cookie size.

Business-critical processes should be optimized. This includes business process optimization,
page design optimization, search optimization, check out/shopping process optimization, user
registration optimization and such.

 Remove known performance blockers such as numerous unnecessary links, iframes,
numerous pages, and non-intuitive information architecture.

 AJAX-enable the web applications to fetch the resources and to load the page data. It results
in more responsive and shorter inter-request times and burstier traffic.

Design of Server Calls
Given below are the main anti-patterns that occur during server calls and back-end services
invocation:

 Explore ways to load the page content asynchronously. We can leverage AJAX requests to
load the page sections, which provide non-blocking page loads.

 Ensure the page data is loaded only on demand and in lazy mode. For instance, the list data or
results data can be shown in paginated view and can be loaded only on user navigation.

 Use asynchronous scripts and AJAX gets requests.

 Specify design goals for external and 3rd party scripts. The main design goals for the external

synchronous load, delayed/long-running blocking JavaScript, in-lined font-face, in-lined scripts,
and in-lined images that prevent browser caching, edge caching, and on-demand loading and
increases load time by 16%.

 Huge white space in HTML document increases page size.

 Absence of Omni-Channel strategy

 Absence of mobility enabled sites or lack of multi-device testing

 Absence of cross-browser testing

 Absence of early and iterative performance testing

 Other common issues with page performance are as follows

 Numerous JS/CSS includes

 Duplicate calls

 Broken links

 Unnecessary calls

 Placement of JS/CSS calls

 Bloated size of web page

 Frequent resource requests with huge payload

 Inline styles and JS logic

Page Design Patterns and Best Practices
Given below are the performance best practices and performance design patterns that are
applicable in the design phase of the project:

 Avoiding extraneous content such as ads can improve the number of objects per page by
25% and improves latency by 30%.

 Adopting user-centric design approach addresses challenges related to usability,
information discovery, accessibility, task completion.

 Conducting iterative performance testing assesses the page performance across
geography and Omni-channel testing for all pages.

 Adopting user-friendly and intuitive information architecture and minimizing

scripts are small size, readable, unobtrusive, and easy to copy-paste to the host page and
asynchronous support.

Web Performance Patterns
Given below are some of the key web performance patterns for optimal performance:

 Make web components lighter, move them closer to the layer where it is used, cache them
longer, and load them more intelligently.

 Layer-wise caching at all layers in the request processing pipeline for optimal performance.

 Progressive enhancement technique that uses layers of standards such as XHTML, CSS
JavaScript to overlay dynamic content with CSS, JavaScript to provide cross-browser accessible
content. The technique mainly consists of the behavior layer (implemented through unobtru-
sive JavaScripts), presentation layer (implemented through CSS), structure layer (implemented
through HTML standards) and core content layer and these layers are selectively added based
on the device capability to maximize usability and accessibility.

 Minimal round trips: The web page should minimize the server calls to the extent possible.
Wherever possible, the calls should be batched to minimize the calls.

 Asynchronous loading pattern: All the page assets should be loaded asynchronously and
resource requests should adopt asynchronous communication.

 Lazy loading pattern: The page assets should be loaded when required and on-demand.

 Lightweight design: The page should adopt a lean model using web-oriented architecture
and use light-weight integration technique.

 Device specific rendition: The page content, assets should be optimized for the rendition
device.

 Responsive page content: Responsive design for HTML elements and adaptive design for
content should be followed.

Web Architecture patterns

Model-View-Controller
architecture style

Microservices Architecture Web-oriented
Architecture

The model-view-controller architecture style is the widely used architecture pattern that
creates loosely coupled flexible web applications with modular components. From the
performance viewpoint, interactional styles such as event observation and notification,
publish/subscribe and asynchronous communication can be added as features for MVC
applications. Most modern web applications heavily use the Representational State Transfer
(REST) architecture style which provides light-weight and asynchronous methods for
requesting and updating web resources.

Microservices architecture allows us to build a web application as a composition of multiple
independently scalable services. The architecture uses light-weight communication
mechanism and functional model for building services. Since each of the microservices are
individually scalable, we could build a highly scalable and performing system using
microservices.

Web-Oriented Architecture (WOA) involves light-weight pluggable client-side widgets. WOA
architecture is light-weight in design and we can easily implement the web performance best
practices. AJAX-based client-side MVC and Model–View–View Model (MVVM) architectures are
used to build rich, interactive and responsive web applications.

About the Author

Dr. Shailesh Kumar
Shivakumar
Solution Architect

Dr. Shailesh Kumar Shivakumar has 19+ years of experience in a wide spectrum
of digital technologies including, enterprise portals, content management
systems, lean portals, and microservices. He holds a Ph.D. degree in computer
science and has authored eight technical books published by the world’s top
academic publishers such as Elsevier Science, Taylor and Francis, Wiley/IEEE
Press, and Apress. Dr. Shailesh has authored more than 14 technical white
papers, five blogs, twelve textbook chapters for various undergraduate and
post-graduate programs and has contributed multiple articles. He has published
20+ research papers in reputed international journals. Dr. Shailesh holds two
granted US patents, apart from ten patent applications. Dr. Shailesh has
presented multiple research papers at international conferences.
Dr. Shailesh’s Google Knowledge Graph can be accessed at
https://g.co/kgs/4YoaiN . He has successfully led several large scale digital
engagements for Fortune 500 clients. Shailesh can be reached at
Shaileshkumar.Shivakumarasetty@mindtree.com

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company that enables enterprises across
industries to drive superior competitive advantage, customer experiences and business outcomes by harnessing
digital and cloud technologies. A digital transformation partner to more than 260 of the world’s most pioneering
enterprises, Mindtree brings extensive domain, technology and consulting expertise to help reimagine business
models, accelerate innovation and maximize growth. As a socially and environmentally responsible business,
Mindtree is focused on growth as well as sustainability in building long-term stakeholder value. Powered by more
than 29,700 talented and entrepreneurial professionals across 24 countries, Mindtree ― a Larsen & Toubro Group
company ― is consistently recognized among the best places to work.
For more, please visit www.mindtree.com or @Mindtree_Ltd.

