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ML Frameworks. 



Comparing ML frameworks 

TensorFlow

In the process of simplifying life, artificial intelligence is gaining immense popularity. Many industries 
are embracing AI to improve efficiency, productivity, revenue, and deliver superior experiences. With 
newer deep learning models, AI can gather and analyze large quantities of structured or unstructured 
data in the form of tables, text, or images—generating valuable business insights. Businesses on their 
path of adopting AI are often faced with a multitude of challenges like:

• How would the business benefit from AI?

• When to adopt AI?

• How and where to start?

• Which frameworks should we use?

In this POV, Anand Sridhar Rao, General Manager, Data and Intelligence, Sylvester Daniel John, Head of 
Applied AI Center of Excellence, and Samson Saju, Senior Research Engineer, Mindtree, share their 
views on the three prominent deep learning frameworks, namely, PyTorch, Keras, and TensorFlow. 
They also study their suitability for different applications.

TensorFlow is a symbolic programmatic library 
developed at Google Brain for research in 
symbolic programming. In the year 2015, it was 
made open source. TensorFlow is developed 
using C++ and Python. It is designed around 
dataflow graphs. Data flow graphs define 
computations mathematically using a directed 
graph. The nodes on the dataflow graph represent 
computations (mathematical operations on 
Tensors), while edges define how the data 
(Tensors) moves through the graph. Since the 
data flowing through these graphs are tensors, 
the framework was aptly named TensorFlow. 
The edges in the dataflow graph are directed to 
connect the source and sink computation nodes. 
TensorFlow enables low-level hardware support 
using CUDA on GPUS and also supports Tensor 
Processing Units (TPUs.)



"I chose PyTorch for my Deep learning experiments when it was in its initial days. I haven't looked 
back after that. Before that, I worked with many deep learning frameworks like Caffe, Theano, Keras, 
TF, etc. But none of them was pure python framework; either there was heavy configuration involved 
or learning specific DSL(Domain Specific Language) or both. With PyTorch, you can write all your 
code in python, and the framework takes care of making sure it runs on CUDA with a comparable 
speed of execution. This will help you think directly in the language you're programming rather than 
working your way through the complicated python program and DSL and their interaction. Also, 
easy to understand error messages and to debug like normal python program."  
Manish Patel, Principal Research Engineer, Mindtree.

PyTorch
PyTorch project is an evolution of Torch, a C-based tensor library with Lua. It was made open 
source by Facebook in 2017 and is written in Python. PyTorch facilitates experimentation and rapid 
prototyping as it allows operations to query code without a full model build. PyTorch has a very 
Pythonic way of doing things, making it friendly to developers migrating from NumPy, as it offers a 
practically identical set of abstractions combined with GPU acceleration. 

Keras
Keras was originated by AI researcher François Chollet in 2015, shortly before joining Google as a 
deep learning researcher and engineer. It was developed as a 'beginner-friendly' high-level API for 
complex and powerful deep learning frameworks. It is written in Python and is available under an 
MIT license with Python, R, and now JavaScript interfaces. However, as of June 2020, the latest 
version of Keras (2.3.0) has been announced as the last version that would support secondary 
platforms beyond TensorFlow.



Trends
To validate the adoption of these frameworks under various settings like Academia and industry, we 
looked at various sources of public data. Primarily we try to identify the popularity of these 
frameworks in research and production.

Research trends
To study the popularity of these frameworks in the research community, we analyzed data from 
popular ML conferences like NIPS, CVPR, etc. We looked at data from 2016 onwards on TensorFlow 
and PyTorch and observed that over the years, the number of papers using PyTorch for their 
implementations has been steadily rising and currently hovering above ~70%. We also observe a 
decline in the use of TensorFlow starting from 2018.  The solid lines in the graph below illustrates the 
number of papers that use Pytorch, while the dotted lines represent the number of papers that use 
Tensorflow.

PyTorch is the framework of Choice  among researchers

Exhibit 1: Raw counts of papers using PyTorch (Solid) vs TensorFlow(Dotted) in prominent AI conference 
(Source:http://horace.io/pytorch-vs-tensorflow/)
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“My work area is mostly targeted towards research and exploration. As part of my projects in 
Mindtree, my work is to implement a research paper, which requires BERT modification. 
For this project, we chose PyTorch, and the implementation was seamless. We picked up PyTorch 
because of its ease of usability, better debugging (due to dynamic computational graph, a contrast 
to static computational graph in TensorFlow), and a plethora of learning material available online.”
Utkarsh Pratiush, Research Engineer, Bangalore.



Pre-trained model availability

March 2021

PyTorch 54%
TensorFlow   16%

Others  31%

New models are often built by looking at the prior art and 
identifying good candidate models related to the task at 
hand. This greatly aids model building by reducing 
computational costs and leveraging benefits from transfer 
learning. We looked at the availability of pre-trained models 
as a key parameter in the success of an ML framework. We 
analyzed public data from the website papers with a code on 
the availability of pre-trained models on various ML 
frameworks. We observed a trend similar to the one seen in 
the research community, showing an increase in 
PyTorch-based implementations and a reduction in 
TensorFlow-based implementations. We observed that the 
number of implementations for PyTorch has doubled since 
2018, while this number has halved for TensorFlow. We also 
observed that the number of implementations in other 
languages is also steadily declining. The data visualization  
depicting this is shown in the below graph. 
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PyTorch  25%

TensorFlow    32%

Others 41%

Exhibit 2: Availability of pre-trained models in various ML frameworks 
(Source: https://paperswithcode.com/trends)



Industry trends
To study the popularity of various ML frameworks in the industry, we used statistics around job 
postings in Europe. We looked at the job postings on indeed.com as a proxy for measuring the 
adoption of various ML frameworks in the industry. Based on our analysis, we noticed that 
TensorFlow has roughly two times more job openings than PyTorch. We also observed that PyTorch 
had significantly more job postings than Keras in most geographies. In Europe, Germany has the 
highest job postings for AI, followed by UK and France. In these countries, TensorFlow has roughly 
two times more job openings than PyTorch, and PyTorch has roughly two times more job openings 
than Keras. Therefore, we concluded that, currently, TensorFlow is the ML framework of choice 
within the industry.

Conclusion
Our studies indicate that PyTorch is the framework of choice among researchers, and TensorFlow is 
currently popular among industries. However, as newer and efficient pre-trained models become 
available on PyTorch, we expect to see an increase in the adoption of PyTorch within the industry. 
As more Ph.D.'s and graduates migrate from Academia to industry, their preferences would turn the 
tide in favor of PyTorch within the industry.

"My favorite ML Framework is TensorFlow as it has better support for various production settings 
with support for various types of computes like CPU, GPU, TPU."  

Josyula Chandra Shekar, Senior Manager, Mindtree.
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Exhibit 3: Number of Job openings in Indeed for various ML frameworks across Europe (Source: Indeed)



Feature comparison
Introduction
In this section, we compare the features of TensorFlow, PyTorch, Keras under two settings, namely 
research and production. In the research setting, we emphasize features like rapid prototyping, easy 
debugging, good documentation, and availability of SOTA pre-trained models. In the production, 
setting importance is given to speed, ease of deployment, no Python overhead, support for mobile 
and edge devices.

ML frameworks for research
As data showed us that PyTorch is the framework of choice in the research community, we asked the 
question: what makes PyTorch popular with researchers?

PyTorch is very Pythonic and is similar to Numpy. PyTorch has a well-designed and documented API 
aiding in faster prototyping, while TensorFlow's API has become very confusing due to multiple API 
changes like 'layers' -> 'slim' -> 'estimators' -> 'tf.keras'. Being very Pythonic, PyTorch integrates well 
with the Python ecosystem and supports PDB (Python debugger). Another favorite feature of 
PyTorch is its ability to query code without a full model build. 

TensorFlow and Keras for research
TensorFlow has recently reached a function-wise parity with PyTorch with its new TensorFlow 2.0 
update. However, since Pytorch has already reached most of the research community, migration 
back to TensorFlow is likely to be slow due to several factors. 

As PyTorch implementations are easier to come by, authors are incentivized to publish their code in 
PyTorch for improved acceptance within the community. Since researchers often work by improving 
existing state-of-the-art models, it is to be noted that major research teams like Google/Deepmind 
continue to use TensorFlow.

TensorFlow recently introduced TensorFlow eager mode, which is almost identical to PyTorch’s 
eager mode, which was popularized by Chainer. This enables TensorFlow to have almost all of the 
advantages of PyTorch’s eager mode (developer friendliness, debugging, etc.) Some disadvantages 
of TensorFlow eager models are that these models would not work in a non-Python environment, 
mobile devices, etc. Keras being a high-level API, often fails to deliver easy access/manipulation of 
the underlying API for complex tasks like custom layer creation.



Feature comparison chart

ML frameworks for production
Industries focus on production, and production needs greatly vary based on the research needs.
TensorFlow was built to specifically address requirements like no Python and mobile. Hence, 
TensorFlow has out-of-the-box solutions for all of these issues. TensorFlow's design choice of using 
data flow graphs and execution engine natively does not need Python. Similarly, TensorFlow Lite 
and tensor flow serving are specifically designed to address mobile and serving requirements. Since 
its inception, PyTorch was designed to cater to research needs and has fallen short in terms of 
features catering to production. And as a result of this, many organizations currently use 
TensorFlow in production. 

But recently, PyTorch has come up with solutions to most production requirements, like PyTorch 
TorchScript for model deployment in C++ without Python dependency, TorchServe for serving, and 
PyTorch Mobile for mobile. PyTorch has introduced a new “graph” representation for computing 
named TorchScript. A PyTorch model can be converted to a Torch script using two techniques 
tracing and script mode. Tracing works by recording the operations executed by the function while 
processing the input and using the recorded operations to build an IR (Intermediate Representation) 
that works with TorchScript. 

One major limitation of tracing is its inability to capture operations that were not executed while 
processing the input (e.g., the if or else blocks of code in the input function). The alternative option 
to building a TorchScript is to use the script mode, which tries to build the IR (Intermediate 
Representation) by reinterpreting the Pythonclass/function. Converting PyTorch models to 
TorchScript gives us the benefits like no Python dependency, which becomes critical for certain 
production scenarios.

Programming 
API

• Low Level API

• Steep learning curve

• Confusing as APIs

switched  many times

(e.g. ‘layers’ -> ‘slim’ ->

‘estimators’ ->‘tf.keras’)

• Low Level Api

• Medium learning curve

• Very Pythonic  similar

to NumPy

• Very flexible easy to

write custom layers

• fast.ai, Flare, and Ignite

serves as high level api

• High level abstracted API

for the low-level

functionality of

TensorFlow,  with the

capability to create six

types of core layers (input

object,  dense layer,

activation layer,

embedding layer, masking

layer,  and lambda layer.)

• Hard to create custom

layers.

• Mixed learning curve easy

to start hard to mature.



Accessibility 
and 

debugging

• Reference GitHub

implementations easily

available for projects from

Google and Deepmind but

harder to come by for

papers from other sources

• TensorFlow debugging

needs active session

• TensorFlow eager

improved the debugging,

eager models can't be

exported to non-python

environment

• Offers a dedicated

debugging module for

debugging which is usually

overwhelming for users

• TensorFlow 2.0 with eager

execution has debugging

better recently

• Reference GitHub

implementations for

newer papers are easier to

find as more researchers

are adopting PyTorch

• Debugging is easy

• PyTorch supports

standard python

debugger pydb, making

debugging easier.

• PyTorch allows operations

to query code without a

full model build.

• Reference GitHub

implementations for

newer and or complex

papers are harder to find

• Underlying code more

difficult to navigate than

in PyTorch

• Harder to identify the

point in the dependency

chain at which the code is

causing problems

• Keras is  easy to work, but

since it has too many

levels of abstractions on

backend frameworks,

debugging gets tricky.

• Should have

understanding of the

lower-level API i.e. mostly

TensorFlow for debugging

Prototyping

• TensorFlow prototyping is

more harder owing to

more complex api and

harder debugging

• PyTorch easy prototyping

as it is very pythonic and

similar to NumPy.

• Lot of reference material

and sample

implementations makes

prototyping fast

• Keras being a high level

api support fast

prototyping when using

standard neural network

layers.

• Prototyping becomes

cumbersome if custom

layers or complex

architectures are to be

built as this would require

access to low level api

and the high level

abstraction of Keras

makes it more complex

Beginner 
friendliness 

and 
documentation

• Daunting for beginners

• Multiple switches (e.g.

‘layers’ -> ‘slim’ ->

‘estimators’ -> ‘tf.keras’)

have made the

documentation more

confusing.

• Being a symbolic

programmatic library built

around dataflow graphs

makes it harder to learn

and daunting for beginners.

• More complex than Keras

but easier than

TensorFlow

• PyTorch is less hindered

by the outdated

'authority' posts that can

plague the Keras initiate,

since PyTorch's

development has been

more consistent since its

inception.

• PyTorch maintains an

active and helpful user

forums

• Considerably easy for
beginners.

• Keras leans on the Stack
Overflow community.

• Keras-related
documentation is  lacking
in practical solutions for
some common problems,
or an adequate number of
code examples needed for
the breadth and scope of
developers' issues.

• Keras developer
information is found in
discrete communities on
Discord or other gated
channels, hidden from
search indexes.



Supported 
languages

Python, JavaScript, C++, 

Java, GO, Swift. 
Python, C++, and Java. Python, R

Dataset size

• Suitable for working with

large datasets

• Provides data structures to

work with various types

of data

• Suitable for working with

large datasets

• Provides data structures

to work with various types

of data

• Built for quick prototyping

is slower.

• Less suitable for large

datasets.

Speed

Fast and supports both CPU 

and GPU

However, rumored to be 

slightly slower than PyTorch

Fast and supports both CPU 

and GPU

However, rumored to be 

slightly faster than 

TensorFlow

Slower than TensorFlow 

and PyTorch being a high 

level api

Industry 
adoption

• Widely adopted in

the industry

(based on job postings)

• Matured solutions

TensorFlow lite and

TensorFlow serving for

deployments

• Picking up in industry

adoption (based on job

postings)

• Features like Torchserve,

PyTorch mobile catering

to industry needs

• Less popular in research

community

• Being a high level api

harder to create custom

layers

Deployment/
production

• TF built around production

needs like No python

overhead  ,Mobile, efficient

serving etc.

• TensorFlow Serving is a

mature package for custom

model deployments.

• Supports TPU

• PyTorch JIT intermediate

representation (IR) of

PyTorch called torch script

allows model deployment

in C++ without python

dependency

(relatively new )

• Torch script has no impact

on standard PyTorch code.

• TorchServe package

reduces need for custom

code for model

deployments

• Keras has a mature

ecosystem of packages

for speed deployments.

Owing to its lower level

api being tensorflow.

• Supports multiple

backends like Tensorflow,

Theano, CNTK etc

• Similar support as

Tensorflow when using

tensorflow as back end

Research 
adoption

• Loosing popularity among

researchers

• Less pythonic

• Poor documentation ,

harder debugging fewer

reference

implementations.

• Most preferred in the

research community.

• More pythonic

• Easy to debug and lot of

reference

implementations

on GitHub

• Less popular in research
community

• Being a high level api
harder to create custom
layers



Mobile and 
EDGE

• TensorFlow Lite

• Supports Android, Linux

and IOS

• Supports Python free

deployment

• Supports ARM Cortex-M

series, ESP32

• Arduino library available,

supports multiple

development boards

• All TensorFlow operations

are not supported

• PyTorch Mobile (Beta)

• Supports Android, Linux

and IOS

• Supports ARM CPU's

• Supports Quantization

• Supports various

backends like GPU,NPU,

DSP available soon in Beta

• Models are ported to

TensorFlow lite

• Will have to use low

level APIs

• Limitations of

TensorFlow lite api

Used by 
companies

Google, AirBnB, AMD, 
Bloomberg, Linkedin, PayPal, 
Qualcomm, Snapchat

Facebook, Genentech, 
JPMorgan Chase, Microsoft, 
Salesforce, Toyota, Wells Fargo

Apple, Google, Nvidia, 
Microsoft, Netflix, Uber, 
Amazon AWS

When and which?
It’s hard to pick a winner among the three ML frameworks, and it often comes down to the use case. 
We recommend TensorFlow for scenarios that focus on multi-platform support, IoT, EDGE, Mobile as 
offerings around these are more mature in comparison to PyTorch. We recommend PyTorch for most 
applications due to its Pythonic API, availability of SOTA pre-trained models, and ease of creating 
complex network architectures. We don't advise using Keras as it is primarily developed for rapid 
prototyping. It often becomes challenging to make custom layer modifications in Keras owing to its 
abstraction over the underlying framework. However, Keras can be used as a tool for rapid prototyping 
of TensorFlow models and eases the steep learning curve of TensorFlow.

• Multi-platform support
IOT, EDGE, Mobile etc.

• High performance
• Functionality

• Flexibility
• Research
• High performance
• Debugging capabilities
• First release advantage

• Rapid prototyping
• Entry point for
• TensorFlow
• Small dataset
• Multiple back-end

support

"I like Keras owing to its ease of use. In my line of work, I need to rapidly prototype deep learning 
models for various classification tasks and the ease to build models in Keras comes in handy for me." 
Raja Ray, Technical Architect, Mindtree.

 "Keras is my framework of choice because of its better support for EDGE devices, and also it 
simplifies the APIs for TensorFlow substantially reducing the learning curve and delivers better 
developer experience.” 
Maheswaran Venkatramani, Associate Tech Lead, Mindtree NXT.

Exhibit 4: Feature comparison chart (Our preference is highlighted)



Future of ML frameworks
With over 8.2 million Python developers, Python has been the language of choice for machine 
learning and deep learning, which is 1 million more than Java and over 6 million more than Swift. 
One of the major reasons for the higher adoption of Python is its simplicity and ease of use. However, 
one of Python’s major drawbacks is its execution speed; it is 400 times slower than C++. In machine 
learning, we get around this by using the libraries written in more efficient languages like C. Also, for 
many production scenarios, the overhead of Python is unacceptable and existing frameworks are 
trying to address this with TensorFlow serving and PyTorch JIT. A lot of effort is being put into 
improving the performance of ML frameworks. For example, JAX, a Python library that is a direct 
successor of the Autograd library, improves computation speed. And, Julia, an alternative language 
to Python, tailor-made for the ML/AI community, has the simplicity of Python and boasts a 
performance similar to that of C language.

Python, TensorFlow, and PyTorch have been with us for so long. Julia is a relatively new framework, 
and we are yet to recognize its full potential yet. Julia does show some promise and is well on its way 
to being one of the best languages for data computations. Julia manages to be faster than Python 
while being as easy to use as Python. However, some questions for which the answer lies in the 
future are, How will Python, PyTorch, and TensorFlow evolve to address the increasing demand for 
computational speed? How fast will the developer community adopt Julia? How will Julia evolve 
next? I guess we will need to wait and watch.

“Julia is turning out to be the future of AI frameworks mainly because of: 

1) Easy to use like python but speeds comparable to C.

2) With scientific machine learning evolving as a field, which essentially combines neural
networks with traditional scientific computing methods. The resulting model works very well
even though trained on less data. Julia is particularly targeted towards such applications.

3) Julia's code is easily readable despite complicated equations coded in it. This results in
fewer challenges in terms of communicating a complex idea among the collaborators.
Thus, it  saves a lot of time."

4) Has a plethora of libraries, hardware support, and community backup. The Juliacon
held every year provides a platform for researchers to showcase their work and bring about a
promising learning environment for everyone."

Utkarsh Pratiush, Research Engineer, Mindtree.



Conclusion
AI has started yielding fruits to its early adopters and is one of the major investment areas for many 
businesses. However, AI transformation is a slow process of gathering the right data and gradually 
building complex AI systems powered by state-of-the-art deep learning models to unlock new 
opportunities, improve operational efficiency, and generate quality business insights. The AI 
transformation of a business has to be carefully planned and executed. We at Mindtree strive to 
make AI pervasive for your business. Welcome to Possible.
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About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”
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