
A Mindtree Whitepaper

Building
 Offline Apps

Offline apps are a necessity in many scenarios. For instance, they provide seamless

user experience during limited or zero Internet availability. Modern mobile apps built

for navigation, gaming and reading use offline mobile apps.

In this whitepaper, we discusss the solution approach, key best practices and the

DevOps for building an offline mobile app using Xamarin framework.

Offline Apps
In this whitepaper, we have considered a usecase for agent enrollment in the insurance domain. The
application discussed in this whitepaper is built as a thick client for desktop, laptop and tablets. We
will discuss the drivers, solution architecture and best practices of offline mobile apps.

Given below are the main drivers for the use case:

1.	 Seamless agent enrollment in offline mode across various user devices

2.	 Handling complex business logic offline without any dependency on enterprise systems

3.	 High mobile app experience

4.	 Quick download of huge reports

5.	 Seamless viewing of large PDFs in offline mode

6.	 Integration of the mobile app with the existing enterprise applications

Overall solution architecture

We have depicted the overall solution architecture in Figure 1

Figure 1 Overall solution architecure

Sqlite Helper DB Helper Service Helper

Docker Helper Logger

Channels: Windows & MAC
Desktop/Tablet Desktop

Presentation Layer

Data Abstraction Layer

Data Layer

Dependency Services

Platform Layer
MAC OS & Windows

Custom RenderersShared - User Interface

Application

UsersProducers/Agents/Brokers

Sqlite Preferences

Data Download Demographics PDF GenerationPolicies Subscription

Data Sync With Server Data Resolution

External Systems

Docker Crashlytics Kibana Integration Server Ping OAuth Payment Gateway

Nuget Packages

Utilities/ Helpers/
Logging

Authorization

Exception Handling

Business Layer

This application is supported on Windows (tablet/desktop) and Mac OS, and users are mainly
producers/agents/brokers. The application has been developed using Xamarin technology, where
80% of code sharing has been done between Mac and windows. There has been an explicit use
of custom renderers, behaviors, converters and the dependency service to exploit the native
functionality. The user interface (UI) of the application is responsive and can be used in different
screen sizes and resolutions. Data download deals with fetching all the needed data to support the
offline mode using static and dynamic global dump. The existing web APIs are being used to get
the group specific data and once the entire data is available, the business logic and computations
are handled to determine the eligible data, which the user can use for subscription of policy. The
communication with the docker is established to generate a PDF once the policy is subscribed.

We have exposed multiple interfaces to avail different services that are needed to process business
logic. Some of these are SQLite service, service helper, DB service, and logger. Data layer is the main
repository where there are huge records of data stored using SQLite segregated across multiple
database, with data being secured using database encryption. We have also used preferences
to persist primitive data types. All the CRUD (Create, Read, Update and Delete) operations are
implemented to deal with data transaction.

NuGet packages provided by .net framework has been used to incorporate some of the services.
There is also dependency on external systems such as ping authentication for secure login and
payment gateway for payment-related services. Kibana integration is done to trace and debug API
failures. We have also used a login tool called Sentry, which provides both offline and online crash/
exception reports for Windows and Mac platforms.

Key best practices

•	 Prism framework is used for making the application loosely-coupled, maintainable and testable

•	 Segregation of presentation and business logic is achieved through the Model-View-View-Model 	
	 (MVVM) design pattern

•	 Text localization implemented using Resx files

•	 Implementation of unit test cases using Xunit and Moq

•	 SonarQube is used to continuously scan codebase for quality and security

•	 Modularity - Better maintainability through clearly defined and independent modules

•	 Compatibility - Better design for integration with other products

•	 Extensibility – Flexibility to add new capabilities without affecting the existing architecture
	 and design

•	 Fault-tolerance - Recover from failure. Handling unexpected crashes / errors

Code Reusability

•	 Custom renderers, reusable UI controls created with custom bindable properties

•	 Multiple visual element instances are created and applied with application level XAML styles

•	 Interfaces/services written for common business logic used in different modules

•	 Common code coverage across platforms ~ 85%

•	 Dependency services to exploit native features.

•	 Mix of Onsite & Offshore teams
	 •	 Onsite
	 	 •	Provide Requirements
	 	 •	Customer touch points
•	 Offshore
	 	 •	Requirements Gathering & 			
	 	 	 User Stories creation
	 	 •	Design
	 	 •	Develop and Test

•	 Offline Capability -
	 Processing of heavy data locally

•	 Regulatory Requirement -
	 Heavy Dockers for Policy Generation

So
lu
ti
on
 P
ar
am

et
er
s

Co
ns
id
er
at
io
ns

•	 Bulk Data Sync/Checkout - 	 	
	 Segregation of dynamic / static data

•	 Integration with Docker for rendering 	
	 PDF in offline mode

•	 Query optimization
•	 Multiple databases
•	 Multithreading
•	 Lazy Loading
•	 SonarQube Integration
•	 Dynamic UI display
•	 Custom Renderers
•	 Accessibility/Tabbing
•	 Appium Tool

•	 EST & IST Coverage

•	 Legacy API Contracts
•	 Code efficiency to handle bulk data
•	 Effective dynamic user experience
•	 MacOS: Xamarin Forms
•	 Automation Framework
•	 Code Analysis

•	 Custom Deployment -
	 Installer and updater

•	 Logging Mechanism -
	 Troubleshoot installation process

•	 Unified Installer - Package size

•	 PowerShell scripts -
	 Windows and shell scripts

•	 Installer logs to track errors and troubleshoot

•	 Experts’ support from Digital practice

•	 Optimized and Single package with
	 50% size reduced

Challenges & Solutions
We have depicted the main challenges in Figure 2, Figure 3 and Figure 4.

Figure 2 SDLC related challenges

Implementation

Arch &
Design

DEV & QA

 Deployment

Figure 3 Key challenges

Figure 4 Deployment Challenges

Lack of application specific API contracts
and confinement to restricted database
structure

Data Processing and adhering to business
rules for the heavy lifting on front end

Mac OS – Xamarin Forms

•	 Global Static Dump
•	 Dynamic Dump
•	 CSV Files
•	 Query Optimization

•	 Multithreading
•	 Table transfer across databases into
	 single db for performance enhancement
•	 Lazy Loading
•	 Data Persistence

•	 Preview Stage
•	 Massive usage of custom renderers
•	 Exploiting alternative controls to meet the
	 requirements
•	 Non availability of Nuget Packages
•	 Custom Implementation of accessibility
	 using listeners

Challenges Solutions

Docker for PDF rendering in offline mode

 Custom deployment for Windows & Mac
app due to Docker image

Docker Replacement, Utilizing Windows
automation scripts for MAC

•	 Leverage PoC for fine-tuning and validating
	 the approach

•	 Communication between application
	 (Windows & MAC) and Docker
•	 Mapping Fields for 1000 + templates
	 (JSON Mapping)
•	 Rendering PDF
•	 Loading Docker images
•	 Referred multiple documents and extensive
	 POCs done

•	 Shell scripts
•	 Auto-Download of builds
•	 Installer logs
•	 Expert Advice and guidance
•	 Package creation using WinRAR
•	 Single package generation & size
	 reduction by 50%

Challenges Solutions

Deployment
We have discussed the deployment details in this section.

•	 Unified installer is a single-click executable file that can install all the packaged software 		
	 required to be installed and effortlessly managed.

•	 The unified installer is an executable file which has been created by using WinRAR
	 (a third party tool).

•	 Users will be provided with the setup wizard guide, where they are guided about the impact of 	
	 using this installer.

•	 Based on the user input, we start the installation by calling the PowerShell script automatically.

Single Click Installation

•	 PowerShell scripting simplifies the configuration and helps automate tasks on the Windows 	
	 operating system.

•	 Our first challenge was to install the application using PowerShell, for which, we used the 		
	 Windows PowerShell Integrated Scripting Environment (ISE).

•	 ISE is used as the host application for Windows PowerShell scripting.The ISE’s command with 	
	 common parameters helped us with writing commands for our installer.

•	 The logic of the overall installation procedure is driven by the unified installer’s main 		
	 installation script. The product feature include scripts that are necessary. For example, the 		
	 prerequisites of a software application which has been validated before installation.

Simplified Script with Powershell

Runtime Business Intelligence

We have depicted the installation workflow in Figure 5 and update workflow in Figure 6

Figure 5 Installation Workflow

Installer exe System Check Appx Bundle +
Docker + Azure CLI

Loading Print
Subsystem

Figure 6 Updated workflow

Figure 7 DevOps Flow

DevOps Strategy
We have discussed the overall DevOps strategy in Figure 7

AZURERelease Manager

Planning
JIRA /

Confluence

Code
Visual Studio

Xamarin
C#, .Net

(MVVM Prism)
SQLite, Docker

Version
Control

Bit Bucket
SourceTree

Package
Windows,

Mac

Bug report
JIRA

Production Incidents
VersionOne

Test Pass

Test Failure

QA Bugs

Release
Azure

Helper tools
SQLite browser Sentry

Bug Analysis
 Sentry/Crash reports

 Kibana logs

Build
	 Visual Studio,
	 Shell script
	 Jenkins
Unit Test
	 XUnit
Analysis
	 Veracode scan,
	 SonarQube
Functional test
	 Appium, Maven, Java
	 Manual testing

Deploy Builds Feeds

Artifacts Package

Build Versions

Dev QA LAB Prod

Plan Develop Integrate Deploy Release

While requirements are gathered from clients, JIRA is used to created epics and user stories. After
user stories are groomed and effort is estimated, it becomes ready for development. For development
and unit testing, Visual Studio IDE is used. Our app is a cross platform mobile application, which
uses Xamarin Forms by using XAML for the frontend and C# for the backend. Segregation of
presentation and business logic is achieved through the Model-View-View-Model (MVVM) design
pattern. This clean segregation between application logic and the UI helps make it easier to test,
maintain, and evolve, and also helps improve code reusability. SQLite is used as the database engine
and we use the DB browser for SQLite to create and edit the database files. Bit Bucket is used for
version control and its integration with JIRA helps with traceability management. As part of the
user story, we can track the commits, the branch it was worked upon and the review status.

Every week, the SonarQube Jenkins job is run to identify bugs and code smells. These bugs are
logged in JIRA and fixed as part of development. XUnit is used to test the business logic inside the
view model. Kibana integration is done to trace and debug API failure. We have also used a login tool
called Sentry, a crash reporting platform, which is used to get all the necessary data for analyzing
and replicating app crash issues and provides both offline and online crash/ exception reports for
Windows and Mac platforms.

Post development, the build is triggered pointing to the QA environment. QA performs manual
testing and also runs the automation scripts that are developed using tools such as Appium and
Maven. If any bugs are identified as part of this process, they get logged in JIRA under the related
epic. QA provides a sign off based on the sign off criteria. Post QA sign off, pre-prod and prod builds
are created. Once the high level prod sign off is provided, build is released into production. Any
production incidents are tracked in the VersionOne tool.

DevOps Model
We have depicted the overall DevOps model in Figure 8

Figure 8 DevOps Model

Manually trigger
build with parameters

Environment Version
Branch/Tag name Source Code

Management
Pull latest

Docker Image Sign Tool

Upload to
AWS

Upload to
AZURE

Authorized
user

Login to
Jenkins

MSBuild Unified Installer EXE

•	 Passing the parameters such as Branch/Tag name, version and

	 environment of the application.

•	 Configuring the source code manager to pull the latest code as per

	 the branch/tag name provided.

•	 Using MSBuild tool to create application.

•	 Using PowerShell plugin to configure the files in installer.

•	 Configure AWS console to download required files for the installer.

•	 Executing the batch files in order to create unified installer.

•	 Uploading unified installer builds to azure.

Automations
Various test-related automations are depicted in Figure 9 and Figure 10

Figure 9 Test Automations

Figure 10 Unplugged Framework

Test Execution Cycle

•	 User stories
	 Creation
•	 User stories
	 grooming
•	 High Level
	 test plan
•	 Test strategy
•	 Exit criteria

Analysis
Backlog

items

Prioritization
 of Backlog

 items

Manual Testing

•	 Test scenario

	 Identification

•	 Test cases &

	 data preparation

•	 Peer review of

	 Test cases from BA

•	 Execution of

	 Test cases and

	 Regression on

	 impacted areas

QA Criteria Check

•	 Acceptance

	 Criteria pass

•	 Zero Blocker /

	 Critical bugs

•	 Planned vs.

	 Delivered

	 user stories

•	 QA sign Off

Exit Criteria Check

•	 Zero Severity 1 & 2

	 defects open including

	 from previous builds

•	 Zero Severity

	 1 & 2 defects from

 	 Security Scan

•	 Release build

	 to UAT & sign off

Automation Testing

•	 Test script design

 	 for In-Sprint

	 Functional Testing

•	 Execution of

	 the test scripts

•	 Regression

	 report generation

H
andover build for

Business Validation

Tools & Tech. Framework
• Setup Configuration
• 	Create Page Object file
• 	Create Test methods

Java

Maven

Appium

Eclipse

Config

(Multi Env)

Reusable

Utility Tests

Script
Business Services

• 	Reuse reusable methods
• 	Create XML/Properties
	 file to execute

Plan & Design

Output

Development

Execution

Server/
API’s

Offline
 App

Local System

Reports & Dashboards 1. Identify the scenarios
2. Identify the workflows
3. Identify the test data
	 requirement &
	 dependencies

1. Test script execution
2. Generating Report

1. Test script development
2. Reuse reusable methods
3. Integrating extent report
4. Code check-in to Bitbucket

Test Data

Data Download

Demographics

Subscription
Of Policy

Automation
Readyness

Automation
Scripting

Automation
Execution

Data Sync With
 Server

 Application

UI Data Validation

 Automation Test Coverage ~ 65%

Plan & Design Development Execution

Validate Data on UI
with excel

Sanity Test
Validate the functionality
of the application. Subset
of regression testing.APP

About the authors

Susmitha is a Module Lead working on mobile projects

and has experience in design, development and

implementation of cross-platform mobile applications.

Her interests include solving complex issues and studying

project management methodologies.

Narendra Sharma is a Module Lead working on mobile

projects and has end-to-end experience in developing

cross-platform applications, installer scripts for Windows

and Mac OS and devops setup and configuration. His

interests include working on new technologies and solving

customer problems.

Md. Sahin Ahmed is a Module Lead working on mobile

projects and has end-to-end experience in developing

cross-platform applications and REST APIs. His interest

includes working on new technologies and solving

complex problems.

Akshaya is a Module Lead working on Mobile Application

projects and has experience in understanding and

analyzing client needs/requirements. She is experienced

in the design, development and implementation of

mobile applications. Her interests include developing

complex UI and solving difficult problems.

Conclusion

One can use Xamarin for building offline apps, which can be shared across Microsoft Windows
and Mac platforms. Also, business services and and data abstraction layer components in the
overall solution can be segregated to implement separation of concerns. One can also use other
best practices such as MVVM pattern and SonarQube for code analysis and code reusability
using modular components. A Jenkins-based DevOps model can be used to automate the release
management activities.

Susmitha G K
Module Lead

Narendra Sharma
Module Lead

Akshaya Narayan Naik

Module Lead

Md. Sahin Ahmed
Module Lead

Daniel is an Engineer working on Mobile Application

projects and has experience in understanding and

analyzing the client needs/requirements. He is experienced

in automation scripting and testing of mobile applications.

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”

Dr. Shailesh Kumar Shivakumar is a Solution Architect

and has 19+ years of experience in a wide spectrum of

digital technologies including, enterprise portals, content

management systems, lean portals, and microservices.

Dr. Shailesh holds a PhD degree in computer science

and has authored eight technical books published by

the world’s top academic publishers such as Elsevier

Science, Taylor and Franscis, Wiley/IEEE Press, and

Apress. Dr. Shailesh has authored more than 14 technical

white papers, five blogs, twelve textbook chapters for

various under-graduate and post graduate programs

and has contributed multiple articles. He has published

20+ research papers in reputed international journals.

Dr. Shailesh holds two granted US patents, apart from

ten patent applications. Dr. Shailesh has presented

multiple research papers at international conferences.

Dr. Shailesh’s Google Knowledge Graph can be accessed

at https://g.co/kgs/4YoaiN . He has successfully led

several large scale digital engagements for Fortune

500 clients. Shailesh can be reached at Shaileshkumar.

Shivakumarasetty@mindtree.com

Daniel Kiran J
Module Lead

Dr. Shailesh Kumar
Shivakumar
Solution Architect

