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Building 
       Offline Apps

Offline apps are a necessity in many scenarios. For instance, they provide seamless 

user experience during limited or zero Internet availability. Modern mobile apps built 

for navigation, gaming and reading use offline mobile apps. 

In this whitepaper, we discusss the solution approach, key best practices and the 

DevOps for building an offline mobile app using Xamarin framework. 



Offline Apps
In this whitepaper, we have considered a usecase for agent enrollment in the insurance domain. The 
application discussed in this whitepaper is built as a thick client for desktop, laptop and tablets.  We 
will discuss the drivers, solution architecture and best practices of offline mobile apps.

Given below are the main drivers for the use case: 

1.	 Seamless agent enrollment in offline mode across various user devices

2.	 Handling complex business logic offline without any dependency on enterprise systems

3.	 High mobile app experience

4.	 Quick download of huge reports

5.	 Seamless viewing of large PDFs in offline mode

6.	 Integration of the mobile app with the existing enterprise applications

Overall solution architecture

We have depicted the overall solution architecture in Figure 1

Figure 1 Overall solution architecure
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This application is supported on Windows (tablet/desktop) and Mac OS, and users are mainly 
producers/agents/brokers. The application has been developed using Xamarin technology, where 
80% of code sharing has been done between Mac and windows. There has been an explicit use 
of custom renderers, behaviors, converters and the dependency service to exploit the native 
functionality. The user interface (UI) of the application is responsive and can be used in different 
screen sizes and resolutions. Data download deals with fetching all the needed data to support the 
offline mode using static and dynamic global dump. The existing web APIs are being used to get 
the group specific data and once the entire data is available, the business logic and computations 
are handled to determine the eligible data, which the user can use for subscription of policy. The 
communication with the docker is established to generate a PDF once the policy is subscribed.

We have exposed multiple interfaces to avail different services that are needed to process business 
logic. Some of these are SQLite service, service helper, DB service, and logger. Data layer is the main 
repository where there are huge records of data stored using SQLite segregated across multiple 
database, with data being secured using database encryption. We have also used preferences 
to persist primitive data types. All the CRUD (Create, Read, Update and Delete) operations are 
implemented to deal with data transaction.

NuGet packages provided by .net framework has been used to incorporate some of the services. 
There is also dependency on external systems such as ping authentication for secure login and 
payment gateway for payment-related services. Kibana integration is done to trace and debug API 
failures. We have also used a login tool called Sentry, which provides both offline and online crash/ 
exception reports for Windows and Mac platforms. 

Key best practices

•	 Prism framework is used for making the application loosely-coupled, maintainable and testable 

•	 Segregation of presentation and business logic is achieved through the Model-View-View-Model 	
	 (MVVM) design pattern

•	 Text localization implemented using Resx files 

•	 Implementation of unit test cases using Xunit and Moq 

•	 SonarQube is used to continuously scan codebase for quality and security

•	 Modularity  - Better maintainability through clearly defined and independent modules

•	 Compatibility  - Better design for integration with other products

•	 Extensibility – Flexibility to add new capabilities without affecting the existing architecture  
	 and design

•	 Fault-tolerance - Recover from failure. Handling unexpected crashes / errors 



Code Reusability  

•	 Custom  renderers, reusable UI controls created with custom bindable properties

•	 Multiple visual element instances are created and applied with application level XAML styles

•	 Interfaces/services written for common business logic used in different modules

•	 Common code coverage across platforms ~ 85%

•	 Dependency services to exploit native features.

•	 Mix of Onsite & Offshore teams
	 •	 Onsite
	 	 •	Provide Requirements
	 	 •	Customer touch points
•	 Offshore
	 	 •	Requirements Gathering &  			 
	 	 	 User Stories creation
	 	 •	Design
	 	 •	Develop and Test

•	 Offline Capability -  
	 Processing of heavy data locally

•	 Regulatory Requirement -  
	 Heavy Dockers for Policy Generation 
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•	 Bulk Data Sync/Checkout -  	 	
	 Segregation of dynamic / static data 

•	 Integration with Docker for rendering 	
	 PDF in offline mode

•	 Query optimization
•	 Multiple databases
•	 Multithreading
•	 Lazy Loading
•	 SonarQube Integration
•	 Dynamic UI display
•	 Custom Renderers
•	 Accessibility/Tabbing
•	 Appium Tool

•	 EST & IST Coverage

•	 Legacy API Contracts
•	 Code efficiency to handle bulk data
•	 Effective dynamic user experience
•	 MacOS: Xamarin Forms
•	 Automation Framework
•	 Code Analysis

•	 Custom Deployment -  
	 Installer and updater

•	 Logging Mechanism -  
	 Troubleshoot installation process

•	 Unified Installer - Package size

•	 PowerShell scripts -  
	 Windows and shell scripts

•	 Installer logs to track errors and troubleshoot

•	 Experts’ support from Digital practice

•	 Optimized and Single package with  
	 50% size reduced

Challenges & Solutions
We have depicted the main challenges in Figure 2, Figure 3 and Figure 4. 

Figure 2 SDLC related challenges
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Figure 3 Key challenges

Figure 4 Deployment Challenges
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•	 Global Static Dump 
•	 Dynamic Dump 
•	 CSV Files 
•	 Query Optimization

•	 Multithreading 
•	 Table transfer across databases into 
	 single db for performance enhancement
•	 Lazy Loading 
•	 Data Persistence 

•	 Preview Stage 
•	 Massive usage of custom renderers
•	 Exploiting alternative controls to meet the
	 requirements
•	 Non availability of Nuget Packages 
•	 Custom Implementation of accessibility  
	 using listeners

Challenges Solutions

Docker for PDF rendering in offline mode

 Custom deployment for Windows & Mac 
app due to Docker image

Docker Replacement, Utilizing Windows 
automation scripts for MAC

•	 Leverage PoC for fine-tuning and validating  
	 the approach

•	 Communication between application 
	 (Windows & MAC) and Docker
•	 Mapping Fields for 1000 + templates 
	 (JSON Mapping)
•	 Rendering PDF
•	 Loading Docker images 
•	 Referred multiple documents and extensive 
	 POCs done

•	 Shell scripts
•	 Auto-Download of builds
•	 Installer logs
•	 Expert Advice and guidance
•	 Package creation using WinRAR 
•	 Single package generation & size 
	 reduction by 50%

Challenges Solutions



Deployment
We have discussed the deployment details in this section. 

•	 Unified installer is a single-click executable file that can install all the packaged software 		
	 required to be installed and effortlessly managed. 

•	 The unified installer is an executable file which has been created by using WinRAR  
	 (a third party tool). 

•	 Users will be provided with the setup wizard guide, where they are guided about the impact of 	
	 using this installer. 

•	 Based on the user input, we start the installation by calling the PowerShell script automatically.

Single Click Installation

•	 PowerShell scripting simplifies the configuration and helps automate tasks on the Windows 	
	 operating system. 

•	 Our first challenge was to install the application using PowerShell, for which, we used the 		
	 Windows PowerShell Integrated Scripting Environment (ISE). 

•	 ISE  is used as the host application for Windows PowerShell scripting.The ISE’s command with 	
	 common parameters helped us with writing commands for our installer. 

•	 The logic of the overall installation procedure is driven by the unified installer’s main 		
	 installation script. The product feature include scripts that are necessary. For example, the 		
	 prerequisites of a software application which has been validated before installation.  

Simplified Script with Powershell

Runtime Business Intelligence

We have depicted the installation workflow in Figure 5 and update workflow in Figure 6

Figure 5 Installation Workflow
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Figure 6 Updated workflow

Figure 7 DevOps Flow

DevOps Strategy
We have discussed the overall DevOps strategy in Figure 7
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While requirements are gathered from clients, JIRA is used to created epics and user stories. After 
user stories are groomed and effort is estimated, it becomes ready for development. For development 
and unit testing, Visual Studio IDE is used. Our app is a cross platform mobile application, which 
uses Xamarin Forms by using XAML for the frontend and C# for the backend. Segregation of 
presentation and business logic is achieved through the Model-View-View-Model (MVVM) design 
pattern. This clean segregation between application logic and the UI helps make it easier to test, 
maintain, and evolve, and also helps improve code reusability. SQLite is used as the database engine 
and we use the DB browser for SQLite to create and edit the database files. Bit Bucket is used for 
version control and its integration with JIRA helps with traceability management. As part of the 
user story, we can track the commits, the branch it was worked upon and the review status.

Every week, the SonarQube Jenkins job is run to identify bugs and code smells. These bugs are 
logged in JIRA and fixed as part of development. XUnit is used to test the business logic inside the 
view model. Kibana integration is done to trace and debug API failure. We have also used a login tool 
called Sentry, a crash reporting platform, which is used to get all the necessary data for analyzing 
and replicating app crash issues and provides both offline and online crash/ exception reports for 
Windows and Mac platforms.

Post development, the build is triggered pointing to the QA environment. QA performs manual 
testing and also runs the automation scripts that are developed using tools such as Appium and 
Maven. If any bugs are identified as part of this process, they get logged in JIRA under the related 
epic. QA provides a sign off based on the sign off criteria. Post QA sign off, pre-prod and prod builds 
are created. Once the high level prod sign off is provided, build is released into production. Any 
production incidents are tracked in the VersionOne tool.



DevOps Model
We have depicted the overall DevOps model in Figure 8

Figure 8 DevOps Model
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•	 Passing the parameters such as Branch/Tag name, version and 

	 environment of the application.

•	 Configuring the source code manager to pull the latest code as per 

	 the branch/tag name provided.

•	 Using MSBuild tool to create application.

•	 Using PowerShell plugin to configure the files in installer.

•	 Configure AWS console to download required files for the installer.

•	 Executing the batch files in order to create unified installer.

•	 Uploading unified installer builds to azure.



Automations
Various test-related automations are depicted in Figure 9 and Figure 10

Figure 9 Test Automations

Figure 10 Unplugged Framework
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Conclusion

One can use Xamarin for building offline apps, which can be shared across Microsoft Windows 
and Mac platforms. Also, business services and and data abstraction layer components in the 
overall solution can be segregated to implement separation of concerns. One can also use other 
best practices such as MVVM pattern and SonarQube for code analysis and code reusability 
using modular components. A Jenkins-based DevOps model can be used to automate the release 
management activities.
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