
A Mindtree Whitepaper

Building
 Offline Apps

Offline apps are a necessity in many scenarios. For instance, they provide seamless

user experience during limited or zero Internet availability. Modern mobile apps built

for navigation, gaming and reading use offline mobile apps.

In this whitepaper, we discusss the solution approach, key best practices and the

DevOps for building an offline mobile app using Xamarin framework.

Offline Apps
In this whitepaper, we have considered a usecase for agent enrollment in the insurance domain. The
application discussed in this whitepaper is built as a thick client for desktop, laptop and tablets. We
will discuss the drivers, solution architecture and best practices of offline mobile apps.

Given below are the main drivers for the use case:

1. Seamless agent enrollment in offline mode across various user devices

2. Handling complex business logic offline without any dependency on enterprise systems

3. High mobile app experience

4. Quick download of huge reports

5. Seamless viewing of large PDFs in offline mode

6. Integration of the mobile app with the existing enterprise applications

Overall solution architecture

We have depicted the overall solution architecture in Figure 1

Figure 1 Overall solution architecure

Sqlite Helper DB Helper Service Helper

Docker Helper Logger

Channels: Windows & MAC
Desktop/Tablet Desktop

Presentation Layer

Data Abstraction Layer

Data Layer

Dependency Services

Platform Layer
MAC OS & Windows

Custom RenderersShared - User Interface

Application

UsersProducers/Agents/Brokers

Sqlite Preferences

Data Download Demographics PDF GenerationPolicies Subscription

Data Sync With Server Data Resolution

External Systems

Docker Crashlytics Kibana Integration Server Ping OAuth Payment Gateway

Nuget Packages

Utilities/ Helpers/
Logging

Authorization

Exception Handling

Business Layer

This application is supported on Windows (tablet/desktop) and Mac OS, and users are mainly
producers/agents/brokers. The application has been developed using Xamarin technology, where
80% of code sharing has been done between Mac and windows. There has been an explicit use
of custom renderers, behaviors, converters and the dependency service to exploit the native
functionality. The user interface (UI) of the application is responsive and can be used in different
screen sizes and resolutions. Data download deals with fetching all the needed data to support the
offline mode using static and dynamic global dump. The existing web APIs are being used to get
the group specific data and once the entire data is available, the business logic and computations
are handled to determine the eligible data, which the user can use for subscription of policy. The
communication with the docker is established to generate a PDF once the policy is subscribed.

We have exposed multiple interfaces to avail different services that are needed to process business
logic. Some of these are SQLite service, service helper, DB service, and logger. Data layer is the main
repository where there are huge records of data stored using SQLite segregated across multiple
database, with data being secured using database encryption. We have also used preferences
to persist primitive data types. All the CRUD (Create, Read, Update and Delete) operations are
implemented to deal with data transaction.

NuGet packages provided by .net framework has been used to incorporate some of the services.
There is also dependency on external systems such as ping authentication for secure login and
payment gateway for payment-related services. Kibana integration is done to trace and debug API
failures. We have also used a login tool called Sentry, which provides both offline and online crash/
exception reports for Windows and Mac platforms.

Key best practices

• Prism framework is used for making the application loosely-coupled, maintainable and testable

• Segregation of presentation and business logic is achieved through the Model-View-View-Model
 (MVVM) design pattern

• Text localization implemented using Resx files

• Implementation of unit test cases using Xunit and Moq

• SonarQube is used to continuously scan codebase for quality and security

• Modularity - Better maintainability through clearly defined and independent modules

• Compatibility - Better design for integration with other products

• Extensibility – Flexibility to add new capabilities without affecting the existing architecture
 and design

• Fault-tolerance - Recover from failure. Handling unexpected crashes / errors

Code Reusability

• Custom renderers, reusable UI controls created with custom bindable properties

• Multiple visual element instances are created and applied with application level XAML styles

• Interfaces/services written for common business logic used in different modules

• Common code coverage across platforms ~ 85%

• Dependency services to exploit native features.

•	 Mix	of	Onsite	&	Offshore	teams
 • Onsite
	 	 •	Provide	Requirements
	 	 •	Customer	touch	points
•	 Offshore
	 	 •	Requirements	Gathering	&	
	 	 	 User	Stories	creation
	 	 •	Design
	 	 •	Develop	and	Test

•	 Offline	Capability	-	
	 Processing	of	heavy	data	locally

•	 Regulatory	Requirement	-	
	 Heavy	Dockers	for	Policy	Generation	

So
lu
ti
on
	P
ar
am

et
er
s

Co
ns
id
er
at
io
ns

•	 Bulk	Data	Sync/Checkout	-			 	
	 Segregation	of	dynamic	/	static	data	

•	 Integration	with	Docker	for	rendering		
	 PDF	in	offline	mode

•	 Query	optimization
•	 Multiple	databases
•	 Multithreading
•	 Lazy	Loading
•	 SonarQube	Integration
•	 Dynamic	UI	display
•	 Custom	Renderers
•	 Accessibility/Tabbing
•	 Appium	Tool

•	 EST	&	IST	Coverage

•	 Legacy	API	Contracts
•	 Code	efficiency	to	handle	bulk	data
•	 Effective	dynamic	user	experience
•	 MacOS:	Xamarin	Forms
•	 Automation	Framework
•	 Code	Analysis

•	 Custom	Deployment	-	
	 Installer	and	updater

•	 Logging	Mechanism	-	
	 Troubleshoot	installation	process

•	 Unified	Installer	-	Package	size

•	 PowerShell	scripts	-	
	 Windows	and	shell	scripts

•	 Installer	logs	to	track	errors	and	troubleshoot

•	 Experts’	support	from	Digital	practice

•	 Optimized	and	Single	package	with	
	 50%	size	reduced

Challenges & Solutions
We have depicted the main challenges in Figure 2, Figure 3 and Figure 4.

Figure 2 SDLC related challenges

Implementation

Arch	&	
Design

DEV & QA

 Deployment

Figure 3 Key challenges

Figure 4 Deployment Challenges

Lack	of	application	specific	API	contracts	
and	confinement	to	restricted	database	
structure	

Data	Processing	and	adhering	to	business	
rules	for	the	heavy	lifting	on	front	end

Mac	OS	–	Xamarin	Forms

•	 Global	Static	Dump	
•	 Dynamic	Dump	
•	 CSV	Files	
•	 Query	Optimization

•	 Multithreading	
•	 Table	transfer	across	databases	into	
	 single	db	for	performance	enhancement
•	 Lazy	Loading	
•	 Data	Persistence

•	 Preview	Stage	
•	 Massive	usage	of	custom	renderers
•	 Exploiting	alternative	controls	to	meet	the
	 requirements
•	 Non	availability	of	Nuget	Packages	
•	 Custom	Implementation	of	accessibility	
	 using	listeners

Challenges Solutions

Docker	for	PDF	rendering	in	offline	mode

	Custom	deployment	for	Windows	&	Mac	
app	due	to	Docker	image

Docker	Replacement,	Utilizing	Windows	
automation	scripts	for	MAC

•	 Leverage	PoC	for	fine-tuning	and	validating	
	 the	approach

•	 Communication	between	application	
	 (Windows	&	MAC)	and	Docker
•	 Mapping	Fields	for	1000	+	templates	
	 (JSON	Mapping)
•	 Rendering	PDF
•	 Loading	Docker	images	
•	 Referred	multiple	documents	and	extensive	
	 POCs	done

•	 Shell	scripts
•	 Auto-Download	of	builds
•	 Installer	logs
•	 Expert	Advice	and	guidance
•	 Package	creation	using	WinRAR	
•	 Single	package	generation	&	size	
	 reduction	by	50%

Challenges Solutions

Deployment
We have discussed the deployment details in this section.

• Unified installer is a single-click executable file that can install all the packaged software
 required to be installed and effortlessly managed.

• The unified installer is an executable file which has been created by using WinRAR
 (a third party tool).

• Users will be provided with the setup wizard guide, where they are guided about the impact of
 using this installer.

• Based on the user input, we start the installation by calling the PowerShell script automatically.

Single	Click	Installation

• PowerShell scripting simplifies the configuration and helps automate tasks on the Windows
 operating system.

• Our first challenge was to install the application using PowerShell, for which, we used the
 Windows PowerShell Integrated Scripting Environment (ISE).

• ISE is used as the host application for Windows PowerShell scripting.The ISE’s command with
 common parameters helped us with writing commands for our installer.

• The logic of the overall installation procedure is driven by the unified installer’s main
 installation script. The product feature include scripts that are necessary. For example, the
 prerequisites of a software application which has been validated before installation.

Simplified	Script	with	Powershell

Runtime	Business	Intelligence

We have depicted the installation workflow in Figure 5 and update workflow in Figure 6

Figure 5 Installation Workflow

Installer	exe System	Check Appx	Bundle	+	
Docker	+	Azure	CLI

Loading	Print	
Subsystem

Figure 6 Updated workflow

Figure 7 DevOps Flow

DevOps Strategy
We have discussed the overall DevOps strategy in Figure 7

AZURERelease Manager

Planning
JIRA /

Confluence

Code
Visual Studio

Xamarin
C#, .Net

(MVVM Prism)
SQLite, Docker

Version
Control

Bit Bucket
SourceTree

Package
Windows,

Mac

Bug report
JIRA

Production Incidents
VersionOne

Test Pass

Test Failure

QA Bugs

Release
Azure

Helper tools
SQLite browser Sentry

Bug Analysis
 Sentry/Crash reports

 Kibana logs

Build
 Visual Studio,
 Shell script
 Jenkins
Unit Test
 XUnit
Analysis
 Veracode scan,
 SonarQube
Functional test
 Appium, Maven, Java
 Manual testing

Deploy Builds Feeds

Artifacts Package

Build Versions

Dev QA LAB Prod

Plan Develop Integrate Deploy Release

While requirements are gathered from clients, JIRA is used to created epics and user stories. After
user stories are groomed and effort is estimated, it becomes ready for development. For development
and unit testing, Visual Studio IDE is used. Our app is a cross platform mobile application, which
uses Xamarin Forms by using XAML for the frontend and C# for the backend. Segregation of
presentation and business logic is achieved through the Model-View-View-Model (MVVM) design
pattern. This clean segregation between application logic and the UI helps make it easier to test,
maintain, and evolve, and also helps improve code reusability. SQLite is used as the database engine
and we use the DB browser for SQLite to create and edit the database files. Bit Bucket is used for
version control and its integration with JIRA helps with traceability management. As part of the
user story, we can track the commits, the branch it was worked upon and the review status.

Every week, the SonarQube Jenkins job is run to identify bugs and code smells. These bugs are
logged in JIRA and fixed as part of development. XUnit is used to test the business logic inside the
view model. Kibana integration is done to trace and debug API failure. We have also used a login tool
called Sentry, a crash reporting platform, which is used to get all the necessary data for analyzing
and replicating app crash issues and provides both offline and online crash/ exception reports for
Windows and Mac platforms.

Post development, the build is triggered pointing to the QA environment. QA performs manual
testing and also runs the automation scripts that are developed using tools such as Appium and
Maven. If any bugs are identified as part of this process, they get logged in JIRA under the related
epic. QA provides a sign off based on the sign off criteria. Post QA sign off, pre-prod and prod builds
are created. Once the high level prod sign off is provided, build is released into production. Any
production incidents are tracked in the VersionOne tool.

DevOps Model
We have depicted the overall DevOps model in Figure 8

Figure 8 DevOps Model

Manually trigger
build with parameters

Environment Version
Branch/Tag name Source Code

Management
Pull latest

Docker Image Sign Tool

Upload to
AWS

Upload to
AZURE

Authorized
user

Login to
Jenkins

MSBuild Unified Installer EXE

• Passing the parameters such as Branch/Tag name, version and

 environment of the application.

•	 Configuring	the	source	code	manager	to	pull	the	latest	code	as	per	

 the branch/tag name provided.

• Using MSBuild tool to create application.

•	 Using	PowerShell	plugin	to	configure	the	files	in	installer.

•	 Configure	AWS	console	to	download	required	files	for	the	installer.

•	 Executing	the	batch	files	in	order	to	create	unified	installer.

•	 Uploading	unified	installer	builds	to	azure.

Automations
Various test-related automations are depicted in Figure 9 and Figure 10

Figure 9 Test Automations

Figure 10 Unplugged Framework

Test Execution Cycle

• User stories
 Creation
• User stories
 grooming
• High Level
 test plan
• Test strategy
• Exit criteria

Analysis
Backlog

items

Prioritization
 of Backlog

 items

Manual Testing

• Test scenario

 Identification

• Test cases &

 data preparation

• Peer review of

 Test cases from BA

• Execution of

 Test cases and

 Regression on

 impacted areas

QA Criteria Check

• Acceptance

 Criteria pass

• Zero Blocker /

 Critical bugs

• Planned vs.

 Delivered

 user stories

• QA sign Off

Exit Criteria Check

• Zero Severity 1 & 2

 defects open including

 from previous builds

• Zero Severity

 1 & 2 defects from

 Security Scan

• Release build

 to UAT & sign off

Automation Testing

• Test script design

 for In-Sprint

 Functional Testing

• Execution of

 the test scripts

• Regression

 report generation

H
andover build for

Business Validation

Tools & Tech. Framework
• Setup Configuration
• Create Page Object file
• Create Test methods

Java

Maven

Appium

Eclipse

Config

(Multi Env)

Reusable

Utility Tests

Script
Business Services

• Reuse reusable methods
• Create XML/Properties
 file to execute

Plan & Design

Output

Development

Execution

Server/
API’s

Offline
 App

Local System

Reports & Dashboards 1. Identify the scenarios
2. Identify the workflows
3. Identify the test data
 requirement &
 dependencies

1. Test script execution
2. Generating Report

1. Test script development
2. Reuse reusable methods
3. Integrating extent report
4. Code check-in to Bitbucket

Test Data

Data Download

Demographics

Subscription
Of Policy

Automation
Readyness

Automation
Scripting

Automation
Execution

Data Sync With
 Server

 Application

UI Data Validation

 Automation Test Coverage ~ 65%

Plan & Design Development Execution

Validate Data on UI
with excel

Sanity Test
Validate the functionality
of the application. Subset
of regression testing.APP

About the authors

Susmitha is a Module Lead working on mobile projects

and has experience in design, development and

implementation of cross-platform mobile applications.

Her interests include solving complex issues and studying

project management methodologies.

Narendra Sharma is a Module Lead working on mobile

projects and has end-to-end experience in developing

cross-platform applications, installer scripts for Windows

and Mac OS and devops setup and configuration. His

interests include working on new technologies and solving

customer problems.

Md. Sahin Ahmed is a Module Lead working on mobile

projects and has end-to-end experience in developing

cross-platform applications and REST APIs. His interest

includes working on new technologies and solving

complex problems.

Akshaya is a Module Lead working on Mobile Application

projects and has experience in understanding and

analyzing client needs/requirements. She is experienced

in the design, development and implementation of

mobile applications. Her interests include developing

complex UI and solving difficult problems.

Conclusion

One can use Xamarin for building offline apps, which can be shared across Microsoft Windows
and Mac platforms. Also, business services and and data abstraction layer components in the
overall solution can be segregated to implement separation of concerns. One can also use other
best practices such as MVVM pattern and SonarQube for code analysis and code reusability
using modular components. A Jenkins-based DevOps model can be used to automate the release
management activities.

Susmitha G K
Module Lead

Narendra Sharma
Module Lead

Akshaya Narayan Naik

Module Lead

Md. Sahin Ahmed
Module Lead

Daniel is an Engineer working on Mobile Application

projects and has experience in understanding and

analyzing the client needs/requirements. He is experienced

in automation scripting and testing of mobile applications.

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business,	leveraging	emerging	technologies	and	the	efficiencies	of	Continuous	Delivery	to	spur	business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”

Dr. Shailesh Kumar Shivakumar is a Solution Architect

and has 19+ years of experience in a wide spectrum of

digital technologies including, enterprise portals, content

management systems, lean portals, and microservices.

Dr. Shailesh holds a PhD degree in computer science

and has authored eight technical books published by

the world’s top academic publishers such as Elsevier

Science, Taylor and Franscis, Wiley/IEEE Press, and

Apress. Dr. Shailesh has authored more than 14 technical

white papers, five blogs, twelve textbook chapters for

various under-graduate and post graduate programs

and has contributed multiple articles. He has published

20+ research papers in reputed international journals.

Dr. Shailesh holds two granted US patents, apart from

ten patent applications. Dr. Shailesh has presented

multiple research papers at international conferences.

Dr. Shailesh’s Google Knowledge Graph can be accessed

at https://g.co/kgs/4YoaiN . He has successfully led

several large scale digital engagements for Fortune

500 clients. Shailesh can be reached at Shaileshkumar.

Shivakumarasetty@mindtree.com

Daniel Kiran J
Module Lead

Dr. Shailesh Kumar
Shivakumar
Solution Architect

