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Building 
       Offline Apps

Offline apps are a necessity in many scenarios. For instance, they provide seamless 

user experience during limited or zero Internet availability. Modern mobile apps built 

for navigation, gaming and reading use offline mobile apps. 

In this whitepaper, we discusss the solution approach, key best practices and the 

DevOps for building an offline mobile app using Xamarin framework. 



Offline Apps
In this whitepaper, we have considered a usecase for agent enrollment in the insurance domain. The 
application discussed in this whitepaper is built as a thick client for desktop, laptop and tablets.  We 
will discuss the drivers, solution architecture and best practices of offline mobile apps.

Given below are the main drivers for the use case: 

1. Seamless agent enrollment in offline mode across various user devices

2. Handling complex business logic offline without any dependency on enterprise systems

3. High mobile app experience

4. Quick download of huge reports

5. Seamless viewing of large PDFs in offline mode

6. Integration of the mobile app with the existing enterprise applications

Overall solution architecture

We have depicted the overall solution architecture in Figure 1

Figure 1 Overall solution architecure
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This application is supported on Windows (tablet/desktop) and Mac OS, and users are mainly 
producers/agents/brokers. The application has been developed using Xamarin technology, where 
80% of code sharing has been done between Mac and windows. There has been an explicit use 
of custom renderers, behaviors, converters and the dependency service to exploit the native 
functionality. The user interface (UI) of the application is responsive and can be used in different 
screen sizes and resolutions. Data download deals with fetching all the needed data to support the 
offline mode using static and dynamic global dump. The existing web APIs are being used to get 
the group specific data and once the entire data is available, the business logic and computations 
are handled to determine the eligible data, which the user can use for subscription of policy. The 
communication with the docker is established to generate a PDF once the policy is subscribed.

We have exposed multiple interfaces to avail different services that are needed to process business 
logic. Some of these are SQLite service, service helper, DB service, and logger. Data layer is the main 
repository where there are huge records of data stored using SQLite segregated across multiple 
database, with data being secured using database encryption. We have also used preferences 
to persist primitive data types. All the CRUD (Create, Read, Update and Delete) operations are 
implemented to deal with data transaction.

NuGet packages provided by .net framework has been used to incorporate some of the services. 
There is also dependency on external systems such as ping authentication for secure login and 
payment gateway for payment-related services. Kibana integration is done to trace and debug API 
failures. We have also used a login tool called Sentry, which provides both offline and online crash/ 
exception reports for Windows and Mac platforms. 

Key best practices

• Prism framework is used for making the application loosely-coupled, maintainable and testable 

• Segregation of presentation and business logic is achieved through the Model-View-View-Model  
 (MVVM) design pattern

• Text localization implemented using Resx files 

• Implementation of unit test cases using Xunit and Moq 

• SonarQube is used to continuously scan codebase for quality and security

• Modularity  - Better maintainability through clearly defined and independent modules

• Compatibility  - Better design for integration with other products

• Extensibility – Flexibility to add new capabilities without affecting the existing architecture  
 and design

• Fault-tolerance - Recover from failure. Handling unexpected crashes / errors 



Code Reusability  

• Custom  renderers, reusable UI controls created with custom bindable properties

• Multiple visual element instances are created and applied with application level XAML styles

• Interfaces/services written for common business logic used in different modules

• Common code coverage across platforms ~ 85%

• Dependency services to exploit native features.

•	 Mix	of	Onsite	&	Offshore	teams
 • Onsite
	 	 •	Provide	Requirements
	 	 •	Customer	touch	points
•	 Offshore
	 	 •	Requirements	Gathering	&	    
	 	 	 User	Stories	creation
	 	 •	Design
	 	 •	Develop	and	Test

•	 Offline	Capability	-	 
	 Processing	of	heavy	data	locally

•	 Regulatory	Requirement	-	 
	 Heavy	Dockers	for	Policy	Generation	
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•	 Bulk	Data	Sync/Checkout	-			 	
	 Segregation	of	dynamic	/	static	data	

•	 Integration	with	Docker	for	rendering		
	 PDF	in	offline	mode

•	 Query	optimization
•	 Multiple	databases
•	 Multithreading
•	 Lazy	Loading
•	 SonarQube	Integration
•	 Dynamic	UI	display
•	 Custom	Renderers
•	 Accessibility/Tabbing
•	 Appium	Tool

•	 EST	&	IST	Coverage

•	 Legacy	API	Contracts
•	 Code	efficiency	to	handle	bulk	data
•	 Effective	dynamic	user	experience
•	 MacOS:	Xamarin	Forms
•	 Automation	Framework
•	 Code	Analysis

•	 Custom	Deployment	-	 
	 Installer	and	updater

•	 Logging	Mechanism	-	 
	 Troubleshoot	installation	process

•	 Unified	Installer	-	Package	size

•	 PowerShell	scripts	-	 
	 Windows	and	shell	scripts

•	 Installer	logs	to	track	errors	and	troubleshoot

•	 Experts’	support	from	Digital	practice

•	 Optimized	and	Single	package	with	 
	 50%	size	reduced

Challenges & Solutions
We have depicted the main challenges in Figure 2, Figure 3 and Figure 4. 

Figure 2 SDLC related challenges
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Figure 3 Key challenges

Figure 4 Deployment Challenges

Lack	of	application	specific	API	contracts	
and	confinement	to	restricted	database	
structure	

Data	Processing	and	adhering	to	business	
rules	for	the	heavy	lifting	on	front	end

Mac	OS	–	Xamarin	Forms

•	 Global	Static	Dump	
•	 Dynamic	Dump	
•	 CSV	Files	
•	 Query	Optimization

•	 Multithreading	
•	 Table	transfer	across	databases	into	
	 single	db	for	performance	enhancement
•	 Lazy	Loading	
•	 Data	Persistence 

•	 Preview	Stage	
•	 Massive	usage	of	custom	renderers
•	 Exploiting	alternative	controls	to	meet	the
	 requirements
•	 Non	availability	of	Nuget	Packages	
•	 Custom	Implementation	of	accessibility	 
	 using	listeners

Challenges Solutions

Docker	for	PDF	rendering	in	offline	mode

	Custom	deployment	for	Windows	&	Mac	
app	due	to	Docker	image

Docker	Replacement,	Utilizing	Windows	
automation	scripts	for	MAC

•	 Leverage	PoC	for	fine-tuning	and	validating	 
	 the	approach

•	 Communication	between	application	
	 (Windows	&	MAC)	and	Docker
•	 Mapping	Fields	for	1000	+	templates	
	 (JSON	Mapping)
•	 Rendering	PDF
•	 Loading	Docker	images	
•	 Referred	multiple	documents	and	extensive	
	 POCs	done

•	 Shell	scripts
•	 Auto-Download	of	builds
•	 Installer	logs
•	 Expert	Advice	and	guidance
•	 Package	creation	using	WinRAR	
•	 Single	package	generation	&	size	
	 reduction	by	50%

Challenges Solutions



Deployment
We have discussed the deployment details in this section. 

• Unified installer is a single-click executable file that can install all the packaged software   
 required to be installed and effortlessly managed. 

• The unified installer is an executable file which has been created by using WinRAR  
 (a third party tool). 

• Users will be provided with the setup wizard guide, where they are guided about the impact of  
 using this installer. 

• Based on the user input, we start the installation by calling the PowerShell script automatically.

Single	Click	Installation

• PowerShell scripting simplifies the configuration and helps automate tasks on the Windows  
 operating system. 

• Our first challenge was to install the application using PowerShell, for which, we used the   
 Windows PowerShell Integrated Scripting Environment (ISE). 

• ISE  is used as the host application for Windows PowerShell scripting.The ISE’s command with  
 common parameters helped us with writing commands for our installer. 

• The logic of the overall installation procedure is driven by the unified installer’s main   
 installation script. The product feature include scripts that are necessary. For example, the   
 prerequisites of a software application which has been validated before installation.  

Simplified	Script	with	Powershell

Runtime	Business	Intelligence

We have depicted the installation workflow in Figure 5 and update workflow in Figure 6

Figure 5 Installation Workflow
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Figure 6 Updated workflow

Figure 7 DevOps Flow

DevOps Strategy
We have discussed the overall DevOps strategy in Figure 7
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While requirements are gathered from clients, JIRA is used to created epics and user stories. After 
user stories are groomed and effort is estimated, it becomes ready for development. For development 
and unit testing, Visual Studio IDE is used. Our app is a cross platform mobile application, which 
uses Xamarin Forms by using XAML for the frontend and C# for the backend. Segregation of 
presentation and business logic is achieved through the Model-View-View-Model (MVVM) design 
pattern. This clean segregation between application logic and the UI helps make it easier to test, 
maintain, and evolve, and also helps improve code reusability. SQLite is used as the database engine 
and we use the DB browser for SQLite to create and edit the database files. Bit Bucket is used for 
version control and its integration with JIRA helps with traceability management. As part of the 
user story, we can track the commits, the branch it was worked upon and the review status.

Every week, the SonarQube Jenkins job is run to identify bugs and code smells. These bugs are 
logged in JIRA and fixed as part of development. XUnit is used to test the business logic inside the 
view model. Kibana integration is done to trace and debug API failure. We have also used a login tool 
called Sentry, a crash reporting platform, which is used to get all the necessary data for analyzing 
and replicating app crash issues and provides both offline and online crash/ exception reports for 
Windows and Mac platforms.

Post development, the build is triggered pointing to the QA environment. QA performs manual 
testing and also runs the automation scripts that are developed using tools such as Appium and 
Maven. If any bugs are identified as part of this process, they get logged in JIRA under the related 
epic. QA provides a sign off based on the sign off criteria. Post QA sign off, pre-prod and prod builds 
are created. Once the high level prod sign off is provided, build is released into production. Any 
production incidents are tracked in the VersionOne tool.



DevOps Model
We have depicted the overall DevOps model in Figure 8

Figure 8 DevOps Model
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Automations
Various test-related automations are depicted in Figure 9 and Figure 10

Figure 9 Test Automations

Figure 10 Unplugged Framework
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Conclusion

One can use Xamarin for building offline apps, which can be shared across Microsoft Windows 
and Mac platforms. Also, business services and and data abstraction layer components in the 
overall solution can be segregated to implement separation of concerns. One can also use other 
best practices such as MVVM pattern and SonarQube for code analysis and code reusability 
using modular components. A Jenkins-based DevOps model can be used to automate the release 
management activities.
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