
A Mindtree Whitepaper

Performance principles provide a best practices-based approach to design optimal performance.
In this whitepaper we discuss the main performance-related principles and the primary bottleneck
scenarios and patterns. We also discuss performance validation methods.

Introduction

A best practices
 guide to performance
 principles and patterns

Performance related architecture principles

Single Responsibility Principle (SRP)

Here are the key performance-related optimization principles:

The SRP principle states that modules should do one thing. By applying the SRP to components
and services, it is easier to maintain, modularize, test, and extend the code. Here are some best
practices of SRP:

Responsive design

Ideally, we should leverage responsive design to cater to multiple devices and browsers. The
responsive design utilizes HTML 5, CSS 3 and media queries to render the web page optimally across
various browsers and devices.

Single code base

Develop the web platform using a tool that uses a single code base for web and for various mobile
devices. Isomorphic applications use a single code base for client and server side. For instance, we
can use IONIC4 based Hybrid cross-platform development using Angular7 with a single source code
for both iOS & Android mobile apps.

Optimal maintenance cost and shorter time to market

A single code base improves maintainability and results in effective cost reduction for
implementation, support, and maintenance. The single code base also accelerates time to market.

Separation of concerns

Create different modules and components to handle data, UI rendering logic, business logic and
communication logic. This pattern improves code testability, reusability, and extensibility.

Testability

The modules and components should follow the single responsibility principle (SRP) that separates
concerns. This makes the code easily testable.

Each service should
handle a single

concern. Services
should be

encapsulated by
the context.

A component
should only handle
the logic related to
the view. All other

logic should be
handled by the

services.

Develop reusable
services so that
components are

simple and
reusable.

Developer
smaller, modular

and reusable
functions.

Presentation
logic should be
separated from
business logic.

Follow DRY
(Don’t Repeat Yourself)

approach. The DRY
approach ensures

reusability,
maintainability,

testability, and reduces
complexity.

Plug and play architecture

The server APIs must be flexible enough to support various clients (such as browsers, mobile apps,
tablets, wearables, watches, kiosks, etc.); various deployment models (such as on-premise, cloud or
serverless architecture); various protocols (such as HTTP, HTTPS, REST, SMTP, etc.); and be plat-
form agnostic (across cloud, database, UI framework etc.).

Extensibility

The APIs should be decomposed based on business functionality. API-driven design should enable
incremental addition of business capabilities.

Service governance

Normally the integration middleware systems provide the service governance. They handle the
concerns such as:

• Parsing incoming requests or inject headers in response. For example, we could use body-parser
 middleware for parsing the HTTP request.

• Authenticating requests before processing. For example, we could use passport to handle
 various authentication strategies (such as OAuth, Email, AD, third party authentication etc.).
 Middleware such as helmet can secure the APIs through headers.

• Logging request and response.

• Handling CORS (Cross Origin Resource Sharing).

• Proxying requests through middleware such as http-proxy.

• Error-handling by gracefully handling application errors, connection errors and data errors.

• Compress the HTTP response. For example, compression middleware can be used for HTTP
 response compression.

• Cache the required and static data.

• Perform any required data transformation.

The API façade pattern can be used at middleware to orchestrate the system-specific calls and
abstract the details from the caller.

Asynchronous API invocations

• Most modern web platforms invoke the server APIs asynchronously. Such asynchronous calls
 prevent blocks in request processing and we can execute the tasks in parallel.

Table 1: Performance bottleneck scenarios

Performance bottleneck scenarios
and patterns
Here’s an overview of key performance bottleneck scenarios and the performance patterns to
address them.

Page level web objects
> 100 objects per page impact
page size and page load times.

Minimize objects per page and load
resources asynchronously.

Resource requests
>20 synchronous resource
requests per page impact page
load time.

Minimal HTTP requests.
Avoid long-running scripts.
Minify and merge resources to
minimize resource requests.

Inline image & inline script
Inline image and inline script
increase page load time by 31%
and 16% respectively.

Externalize images and scripts.
Avoid inline scripts and images.

Web objects in critical path
HTML Parsing & JS execution
forms 35% of critical path and
creates bottleneck.

Avoid long-running scripts.
Use asynchronous scripts.

3rd party script/external object
Creates front-end SPOF
for long running scripts.

Use async scripts and test 3rd
party objects.
Use time out to avoid blocking.

Scripts

Synchronous request of
long-running scripts/files
blocks the page and creates a
single point of failure.

Asynchronous resource request
and on-demand loading.
Use the iframe of the 3rd party scripts.
Real user monitoring of
performance metrics.

Server response Impacts TTFB and latency
and page load time by 10%. CDN usage and connection caching.

Server configuration

Improper connection pool
size, connection pool setting,
threads’ pool size impacts
performance at heavy load.

Fine tune and test the application
server settings.

DNS lookup
DNS lookup forms 13% of
critical path.

Network layer

Application server layer

Web server layer

User-agent layer

DNS caching and connection caching.

Component causing bottleneck Bottleneck scenario at high load Web performance optimization pattern

Performance validation
We need to understand the application usage patterns and simulate the user load during perfor-
mance testing. Based on the application needs and performance SLAs, we conduct various kinds of
performance testing. The common types of performance testing are:

• Load testing: Measure the system performance at pre-defined load conditions and for a speci-
fied concurrent user load. Record the change in system behavior and performance with the increase
in the load. Monitor the system resources such as CPU, memory, and network utilization during the
load testing.

• Stress testing: Measure the system behavior and performance under stress conditions. The
system will be subjected to peak loads, sudden spikes and extended high load scenarios as part of
this testing. We will discover the application’s break point and understand the maximum load levels
the system can handle without performance degradation. Remember that the system will suffer
from resource depletion during this testing. We use the following inputs for stress testing:

• Identify peak limits – number of transactions, concurrent users, 24/7 availability etc.

• How many concurrent users at peak and average load?

• How many concurrent transactions at peak and average load?

• Endurance testing: The system will be subjected to load testing for an extended duration
 (usually 48-72 hours) to measure system performance and system behavior. We can identify
 any potential memory leaks, buffer overflow issues, and hardware-related issues during
 this testing.

• Scalability testing: We will test the system with various workloads based on the workload
 model. During this testing, we iteratively increase the concurrent user load and check the
 system performance. We must identify the key workload and mitigate the bottlenecks that
 impede the application scalability. Start with 10% of data, then scale up to maximum with
 increasing data volume periodically.

• Reliability and availability testing: We will test the reliability and availability of the system
 during load testing and stress testing. We will also check the MTTF (Mean Time between
 Failures) for the system.

• Performance benchmarking testing: We compare the application performance vis-à-vis the
 performance of earlier versions of the application. We also compare the application perfor
 mance with applications in the same category as well as competitive applications.

• Volume testing: We need to test the system with data volume and content similar
 to production.

Performance NFR compliance validation
In this section, I will discuss the key methods to test the performance NFR compliance. The main
way to ensure the performance NFR compliance is to perform a thorough, iterative, and layer-wise
performance test. Additionally, we should setup a robust performance monitoring system to
constantly monitor and alert performance incidents.

During performance testing, we record and report these key performance metrics:

Key performance testing metrics

Response time:

We test the overall response time for pages,
transactions and business processes. This
entails testing the response time at various
user loads.

System scalability:

We test the system with various workloads
based on the workload model. We iteratively
increase the concurrent user load and check if
the system scales successfully at various loads.

Reliability and availability:

We test the reliability and availability of the
system during load testing and stress testing.
We also check the MTTF (Mean Time
between Failures) for the system.

Resource utilization:

We monitor the system resources such as CPU,
memory, network bandwidth and input/output
activities during various loads.

Efficiency:

We check if the resource utilization is
healthy and within the agreed thresholds
during various loads. For instance, we
monitor if the CPU utilization is within 80%
during the entire duration of load testing.

Recoverability:

We test how well the system recovers from
failure and how well the system
handles errors gracefully.

Performance monitoring tools
We could leverage a range of open source and commercial tools for performance monitoring. Table 2
lists the popular performance monitoring tools.

Real-time event monitoring,
visualizations and data queries Prometheus & Grafana

Search engine Elasticsearch

Synthetic monitoring tool

• DynaTrace (Commercial)
• Selenium
• Lighthouse
• Webpagetest.org

Database monitoring

Log monitoring

• Automatic Workload Repository (AWR)
• Fluentd

• Splunk
• Fluentd

Message streaming Notification Alert manager

Container monitoring

• Node exporter
• Docker stats
• cAdvisor
• Prometheus

Web page monitoring
(page size, page response time,
number of requests, asset load
time, etc.)

Development tools/
page auditing

• Webpagetest.org
• Site speed (https://www.sitespeed.io/)
• Google page speed insights
 (https://developers.google.com/speed/pagespeed/insights/)
• Pingdom (commercial)
• Silk performance manager (commercial)
• Uptrends (commercial)
• https://web.dev/measure/

• Google Chrome developer tools
• Test my site
 (https://www.thinkwithgoogle.com/feature/testmysite/)
• Google Chrome lighthouse
• HTTP Watch
• https://speedrank.app/en
• Fiddler
• Firebug
• Web tracing framework
 http://google.github.io/tracing-framework/
• Timeline tool
 https://developers.google.com/web/tools/chrome-devtools/
 evaluate-performance/timeline-tool#profile-painting

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”

Dr. Shailesh Kumar Shivakumar
Solution Architect

Dr. Shailesh Kumar Shivakumar has 19+ years of experience across a
wide spectrum of digital technologies, including enterprise portals,
content management systems, lean portals, and microservices. He holds
a PhD degree in computer science and has authored eight technical books
published by the world’s top academic publishers. He has also authored
several academic content pieces for various undergraduate and
postgraduate programs. He has published 20+ research papers in reputed
international journals and holds two granted US patents.

In this whitepaper we discussed the key performance-related architecture principles and best practices to design a
high-performance application. In addition, we examined bottleneck scenarios and patterns. Lastly, we considered
performance validation scenarios.

Conclusion

Multi-geo web
performance testing • https://performance.sucuri.net/

Cloud monitoring

Website speed test

Load testing

• AWS CloudWatch

• https://tools.keycdn.com/speed

Web site latency test

Real user monitoring (RUM)

• Ping test (https://tools.keycdn.com/ping)

• New relic
• SpeedCurve (https://speedcurve.com/)

• BlazeMeter
• Apache JMeter

Table 2: Performance monitoring tools

