
A Mindtree Whitepaper

GitLab is one of the most popular DevOps platforms, and provides an
ecosystem for code and release management and the pipeline tools for
end-to-end management. In this whitepaper, we discuss the methods
and best practices to implement DevOps using the GitLab ecosystem,
and cover its tools, branching strategy and design.

GitLab-based
DevOps Platform

GitLab Tools

GitLab is a full-fledged DevOps system that provides a software repository, CI/CD system, user management
and monitoring from a single ecosystem as a Software as a Service (SaaS) offering with industry standard
end-to-end security.

Apart from traditional command line tools, it provides webUI for both operations, maintenance and
performing regular branching, tagging, merging and any other Git operations. These rich user interfaces are
available for CI/CD pipeline monitoring, status check and configurations as well.

GitLab enables high flexibility to integrate most other third party tools such as SonarQube, build scripts for
the most modern technology stacks and automation, as well as deployment plugins to cloud labs such as
Firebase Cloudlab and BrowserStack. Apart from regular environment-based deployment in cloud hosting, it
also supports multi-cloud based deployment.

The GitLab DevOps ecosystem ensures continuous feedback, which is a key need for agile development.
We have depicted the GitLab ecosystem in Figure 1.

GitLab-based DevOps

Figure 1 GitLab ecosystem overview

Plan &
Create

Software
Repository

Issue
Tracking

Gitlab Pipeline
[CI/CD]

Manage

Secure

Plan & Create

As part of plan and create program, the manager plans the release and defines milestones. The business
analysts author user stories and collaborate with team members.

Software Repository

A version-controlled software code management system that is easy to create and manage with workflows
for each solution tenant in the architecture. The repository’s access is supported with industry standard
security like user management with role-based access management, multi factor authentications and SSL
handshakes. This code base can be configured with workflows and branching strategies, while code review
stages can be defined by integration to internal or external tools.

GitLab Pipeline[CI/CD]

The crux of the solution support for a whole devops ecosystem is provided via the GitLab pipeline, where a
continuous integration and continuous deployment is managed. Modern solutions such as a docker
container-based scalable DevOps build pipelines are available with a flexibility of integrating a private runner
or an on-premises / local build system. Multi-cloud-based solution deployment is supported with ease, while
enough plugins and tools are available that will help assess the code quality. Additionally, automated test
cases can be executed, while release management is supported via build deployment to environments or
external distribution entities such as appcenter, testflight, Play Store and app stores.

Issue Tracking

Monitoring and issue tracking is supported, which helps tag/manage issues. The release supports continuous
delivery in addition to continuous integration and deployment. It also has an automated issue tracking
system that can help issue reporting at each stage of continuous development and deployment, which
enables seamless tracking for continuous delivery that meets the defined quality standards.

Manage and Secure

As part of manage, we handle various phases of the program, and as part of security, we manage the overall
security of the solution.

Figure 2: Overview of GitLab tools and interfaces for end users

WebUI, Web API, Merge Request, Gitlab Pipeline, Git CLI

Gitlab

Gitlab Repository

Gitlab Workflows

Gitlab code review

User Management

Git RBAC

Jobs

Private Runner

Docker

Kubernetes

Environment Variables

Configurations

Fast Fail Tests

Code Quality Profiles

UI Automated Tests

Performance Testing

Artifacts Publish

Automated Builds

Unit Test

Integration Testing

SAST

DAST

Dependency Check

Container Scanning

License Management

Plan

Create

Issue Tracking

Release Management

Metrics

Logging

Cluster Monitoring

Gitlab Pipeline Security Manage Monitor

We have depicted various GitLab tools across various solution pillars needed for a full-fledged DevOps
implementation. For each solution pillar, GitLab has various corresponding tools that help meet the devops
needs. The Kubernetes and docker-based solution is purely the next gen solution for a Devops platform.
It has a sophisticated mechanism for stakeholders and users such as project management, development team,
quality assurance team, devops engineers and business users, enabled with a rich user interface and visual
dashboards for metrics. This enables effective collaboration from all participating teams in all roles and
responsibilities.
For the compliance needs, Static Application Security Testing (SAST), Dynamic Application Security Testing
(DAST), license management, dependency check and container scanning tools take care of quality standards,
and automated checks makes continuous delivery adhere to quality profiles.
Let us check the GitLab devops setup and configuration process to follow for dependencies that need to be
identified for a program that has both cloud and mobile apps deployment.

Given below are the Prerequisites for GitLab devops setup,
1. Enterprise subscription
2. Creation of a software repository
3. Repo workflow
4. Branching strategy
5. Environment strategy
6. GitLab pipeline strategy
7. Tools consideration in each GitLab pipeline stages
8. Quality profiles and gates for each stage or overall pipeline
9. Build deployment and distribution strategy
10. App promotion strategy

Tools and strategy consideration for GitLab DevOps
Design

Given below are the main design considerations:

• Single eco system for end-to-end devops

• Managed SaaS-based solution for DevOps

• Easy to configure and scalable DevOps for a large-scale program with a multi-pod-based diverse
 technology stack

• Industry standard security, manage and monitor mechanism

• Continuous delivery that suits the agile methodology-based project

Drivers

• Git way of working for developers, devops and release managers

• Optimized infrastructure maintenance

• Steps and stage-wise configuration with automated issue tracking, quality gates for standard and security
 scans for compliance

Motivations

• Automated devops system that lets everyone in the team to contribute, brings in collaboration, enables
 remote monitoring and performs automated issue reporting and tracking for a continuous delivery

• Keeps system as well as source code secured and compliant with security standards and quality gates

 We have depicted a sample GitLab based DevOps in Figure 3

Branching Strategy

Designing and implementing appropriate branches is crucial to implement an extensible development and
deployment strategy. In this section, we have laid out a few GitHub-based branching best practices.

To start with, we need to define the core branches based on the development and deployment needs. In
Figure 4, we have defined the branching strategy that we commonly use.

Figure 3: GitLab DevOps overview with ci/cd pipeline job and stages

Figure 4 Key Branches

Developers

Source Code
Repository

code commit

Continuous Integration Pipeline overview with
Job and stagesauto

trigger

build
Test &
code

coverage

Code
correction

Code
analysis

Artifact
generation
& signing

Dependency
scanning

AppCenter

Artifact
upload

Artifact
storage

Environments

Distribution user group

License
Management

SAST/DAST

Play StoreApp Store

Ex
te

rn
al

sy

st
em

s

Continuous Deployment manual / automated

Cloud Labs

Continuous Delivery
manual / automated

Master

Release

Dev

Feature

Each solution component will have its own independent Github repository

The main branches are as follows:
• Feature branch is used for user story/feature development
• Dev branch is used for Dev environment
• Release branch is used for stable releases
• Master branch represents what’s in production currently or is production-ready.
In Figure 5, we have depicted the process of a release across all these branches.

Given below are the high level steps in the release management flow:
1. User stories are developed in separate Feature branches and merged back into the Dev branch
2. Dev branch allows bug-fixing, hardening and other release preparation to continue in isolation. No feature
 development should happen on these branches.
3. Dev branch will be protected so that code in feature branches can be reviewed and approved by designated
 reviewers before merging into release branch. This can be implemented using built-in Pull request and
 protection features of GitHub.
4. QA-approved build version gets deployed to UAT and other pre-production environments. If there are any
 defects, it will be done from the Dev branch.
5. Once the code is stable enough for release, it will be pushed to the Release branch. The code in this branch
 is tagged with the release number.
6. The code from Release branch will be pushed to the Master branch for production deployment.

At a high level, the flow will be like this:

Feature Branch Dev Branch Release Branch

To handle the production bug fixes, we use a hotfix branch as depicted in Figure 6. A branch will be created as
needed for hotfixes in production. These will originate from the master branch and merged back into master
as well as the dev branch for inclusion in future releases. Hotfix branches should be very short-lived.

Figure 5 Release Flow

Merge to
master

Release

Dev Branch

Feature 1

Feature N

Code Release

Master

Master Branch

DevOps Implementation
The start of the pipeline is based on the code commit, which can either be automated or set for manual
execution. Each of these start a stage that can either have a single or multiple jobs with an objective that
decides if the stage has been successfully completed. Quality gates can be defined for each stage to manage
the quality levels.

Build

It is a build phase to generate the binary files in either debug or release mode. The GitLab pipeline .yml file
will have the package manager dependency such as Maven, NPM, Pega, to compile the binary using gradle,
npm etc.

Test and Code coverage

Unit test cases and fast fail test cases can be configured here to identify the code quality. Additionally, UI
automation test cases can also be executed in this phase. The end objective of this phase is to identify the
code coverage in terms of percentage through these test cases.

Code correction

Code analyzer and lint tools perform code correction checks and report identified issues in this stage.

Code analysis

SonarScanner or SonarQube-based code analysis is performed in this stage. This stage can also be configured
to consolidated issues identified by the code correction phase, so that all issues are available from a single
SonarQube dashboard.Quality gate rules can be defined at this stage before a final artifact is generated such
that only if the rules are passed, the pipeline proceeds to the next stage.

Figure 6 Hotfix branch

Hotfix Branch

Master

Dev

Artifact generation and signing

Artifact generation is a phase where a final distributable binary is created that also includes signing the
artifact to make it secure and ensure that code obfuscation is achieved.

Dependency scanning

Dependency scanning helps determine if the external code integrated in the binary such as plugins, sdks,
frameworks, library contains any vulnerabilities.

License management

As part of this phase, we attribute all the licensed software used in the application along with their licenses.

Artifact Upload

At this stage of a pipeline, the artifacts upload to perform a deployment to external systems such as App
store / Play store for mobile apps or multi-cloud-based environment for specific deployment of web apps so
that the backend solution can be enabled. A successful deployment means a successful pass of all quality
gates set for previous stages of pipeline, thus assuring compliance to security and quality standards.

Tools and strategy followed in setting up GitLab based DevOps:

Category

Source code repository

Code Review

Code Merge and Commit

Continuous Integration

CI Infrastructure

Technology Stack

Dependency Manager

Build Tools

Monitoring

Code Analysis

Unit Test

Code Coverage

Version Increment

Alerts and notification

Security Tool (SAST/DAST)

Artifact Upload

App Promotion

GitLab

GitLab

GitLab, SourceTree, Android Studio,
GitLab client plugins for IDE

GitLab Pipeline

Docker + Private runner for iOS

Swift for iOS, Kotlin for Android,
Angular

CocoaPods, Maven, NPM

XCode, Gradle, NPM

New Relic

Cloud-hosted SonarQube, Swift Lint,
SonarLint, Android Kotlin, Android Lint,
Codelyzer, TSLint

XCTest, Junit, Fragment Scenarios, ngtest

Jacoco, XCTest, SonarQube, ngtest

Auto increment on patch version
Manual configuration for major.minor

On build failure with changelist
On successful upload of build artifacts

OWASP Dependency Check, Burb Suit,
App Scan

AppCenter, JFrog, AWS EC2, TestFlight,
Play Store, Browser Stack

DEV -> QA -> FVT->FIT->SIT->Staging->UAT->
PreProd->Prod Each upgrade is based on QA
and business user sign off

Sample Tools

Best Practices
1. Docker-based hosting reduces the infrastructure maintained and the build time

2. Private runner for iOS compilation is better than cloud-based solutions for cost effectiveness

3. Automated issue tracking to monitor the health of code commit

Advantages of GitLab
• For a whole DevOps setup, configure and effective utilization, and realization for an agile development
 project, it is a one stop solution that enables effective collaboration. It lets everyone in the team
 contribute, and provides easy remote monitoring, both visual and automated alerts, including pipeline
 workflows

• GitLab can scale up to large enterprise programs effectively. It can also be customized to small scale
 industries and startups to suit their business needs

• From an infrastructure point of view, it lets users choose and integrate their choice of infrastructure via a
 private runner or a sophisticated SaaS offering over Docker

• GitLab provides multiple deployment provisions including multi-cloud deployment, which are the latest
 needs for modern enterprise applications and end-to-end solutions till front end channels such as Web
 application, mobile apps and chatbots.

• Since GitLab is an opensource platform, its features and functionalities are constantly evolving,
 addressing the needs of modern applications

• Since GitLab is a SaaS offering, reliable uptime is achieved for development cycles and meets the velocity
 for delivery. Concurrent execution of GitLab runner associated with a job enables faster build pipeline
 execution. From the whole pipeline perspective, there can be multiple jobs that are executed at
 the same time.

About Mindtree
Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility to achieve
competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its deep domain knowledge to 275+
enterprise client engagements to break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to
move at the speed of business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation.
Operating in more than 15 countries across the world, we’re consistently regarded as one of the best places to work, embodied every day by our
winning culture made up of over 22,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

www.mindtree.com

About the Authors

Dr. Shailesh Kumar Shivakumar is a Solution Architect and has 19+ years of

experience in a wide spectrum of digital technologies including, enterprise

portals, content management systems, lean portals, and microservices. Dr.

Shailesh holds a PhD degree in computer science and has authored eight

technical books published by the world’s top academic publishers such as

Elsevier Science, Taylor and Franscis, Wiley/IEEE Press, and Apress. Dr. Shailesh

has authored more than 14 technical white papers, five blogs, twelve textbook

Dr. Shailesh Kumar Shivakumar

Sandhya is a Senior Architect who has worked on multiple mobile projects with

the in-house devops setup and configuration of these systems. With hands-on

experience of using in-house setup and identifying real benefits of streamlined

release management, she has greatly helped in delivering quality apps to

customers.

Sandhya B

chapters for various under-graduate and post graduate programs and has contributed multiple articles. He has

published 20+ research papers in reputed international journals. Dr. Shailesh holds two granted US patents,

apart from ten patent applications. Dr. Shailesh has presented multiple research papers at international

conferences. Dr. Shailesh’s Google Knowledge Graph can be accessed at https://g.co/kgs/4YoaiN . He has

successfully led several large scale digital engagements for Fortune 500 clients. Shailesh can be reached at

Shaileshkumar.Shivakumarasetty@mindtree.com

