
A Mindtree Whitepaper

Application performance is a crucial success factor for the program. The overall performance impacts
the end user experience. We execute performance assessment exercise to understand the overall
performance of the application. The performance assessment exercise involves analyzing the performance
 bottlenecks at various layers and at various solution components. In this whitepaper, we discuss the
 details of performance assessment exercise.

Introduction

Executing Performance
 Assessment Exercise

Layer-wise Performance Assessment

Web Layer

As the overall performance is dependent on performance at each of the layers, it is imperative that
we assess the performance at various layers.

We measure and monitor the performance metrics for the web components such as web pages,
views, and UI libraries. We can use the below given checklist to assess the web components:

Web Performance Principles

Check if the below given web performance principles are adhered to in the application:

1. Simple and lightweight: Keep the frequently used pages like home page and landing page simple
 yet effective. This would involve-

a. Include only key functionalities to keep it light weight

 b. Have optimized marquee images

 c. Provide search feature to reach any page using keyword search

 d. Provide elaborate menu to allow the user to navigate to any sub level page.

2. Fine tune the key functionalities for performance.

3. Maximize client side components: Wherever possible employ partial page rendering to avoid the
 full page refresh.

4. Avoid 3rd party plugins unless absolutely required. Even when they are included, only load the
 scripts on-demand and keep the 3rd party scripts at the bottom of the page.

5. Think caching: Apply caching at all possible layers to get optimum performance. Caching can be
 applied at web server, server side, database layer and other possible integration layers

6. Performance guidelines: Come up with organization level performance guidelines involving
 images, JS/CSS coding and other aspects. Some of them could include-

a. Always sse PNG format of image

 b. Use CSS sprites

 c. JS code validation with JSLint

 d. Use lazy loading of content wherever possible

 e. Avoid iframes and redirects to the best extent possible

Are JS and
CSS files
merged and
minified?

Are images
optimized using
CSS sprites or
impage
compression
methods?

Do we have too
many chatty
calls between
web and the
server?

Is the application
using the
browser cache to
store the
frequently
used web
components?

Is lazy loading
used for
non-critical
page resources?

Are the
JavaScripts files
placed at bottom
of the page and
CSS files placed
at the top of the
page?

1. Are all the key columns indexed?

2. Are the main application queries analyzed?

3. Are all the queries fully analyzed?

4. Are the query explain plans analyzed to check
 the usage of indexes?

5. Is the data model optimized for the application?

6. Are look up tables used to store the static
 lookup values?

7. Is the response cached for frequently
 used queries?

Database Layer

The database layer primariliy involves the
database objects such as tables, views, and
such. We can use the below given checklist to
assess the database layer:

Application Layer

The application layer mainly involves the server-side code that exposes the services for the web
components. We can use the below given checklist to assess the application layer:

Is the code
reviewed from
the performance
standpoint?

Are the
duplicate code

blocks
removed?

Is the server
configured with
appropriate
memory and
storage?

Is layer-wise
caching

implemented?

Is the API
call tracing
enabled to

understand the
end to end
performance
metrics?

Is the error
monitoring
enabled?

Is the
application
performance
monitoring
enabled?

Performance Metrics
Given below are the key performance metrics which we can analyze for all the involved layers:

• System availability that depicts the overall availability of the system

• Response times include the metrics such as Time To First Byte (TTFB) and Average Response
 Time (ART) for the web pages. The response times are measured at average user load and at
 peak user load.

• Resource utilization provides the average utilization of resources such as CPU, memory, disk,
 and the bandwidth.

We also check the below given parameters at the server level to ensure that we have configured
the optimal values to handle the peak user load:

• Heap size indicates the memory available to the application objects.

• Connection pool settings provide the details such as minimum pool size, maximum pool size
 and such

• Thread parameters indicate the thread-related values such as timeouts, maximum allowed
 thread and such

• Session parameters indicate the session related parameters such as session timeout values

Performance Aiding Tools
As part of performance assessment, we can identity the existing performance aiding tools and
recommend the required tools. We have given the main performance aiding tools in table 1.

Web page analysis tools (HTML
analysis, performance benchmarking,
improvement guidelines)

Yahoo YSlow, Google PageSpeed,
HTTPWatch, Dynatrace AJAX Edition
Google Chrome Lighthouse

Firebug, Google Chrome Developer toolbar,
Fiddler, HTTP Archive WEB PAGEiddle,
CSSLint, JSLint, W3 CSS Validator,
W3 HTML validator

Yahoo UI (YUI) minifier, JSMini, JSCompress

Page development tools (analysis of page load
times, asset size, asset load times and such)

Asset merging and minification tools
(JS/CSS minification)

Google PageSpeed Insights

Table 1: Performance Aiding Tools

Tool Category Open Source / Commercial Tool(s)

Page performance testing tools
(load simulation) JMeter, LoadUI, Grinder, Selenium

Web Page test, DynaTrace Synthetic monitoring

Akamai, CloudFlare, KeyCDN,

Synthetic monitoring (transactions
simulation and performance statistics)

CDN

Google Web Analytics, Omniture, Piwik
Web analytics (track user behavior,
performance reporting)

CSS Sprites, SpriteMe, SpritePad

WebProphet, WProf

CSS optimization tools

Error monitoring

Mobile app testing

Bottleneck analysis (dependency and
bottleneck analysis)

New Relic, Dynatrace, Gomez
Real User Monitoring (RUM) (monitoring
and bottleneck analysis)

Wireshark, Charles Proxy
Network analysis (network traffic, HTTP
headers, request/responses, protocol analysis)

New Relic, AppDynamics
Dyna Trace Monitoring, Nagios

Splunk, DataDog

Healthcheck monitoring Prometheus, ELK (Elastic Search, Logstash,
Kibana), Kubernetes pod monitoring

Application profiling Open Source: JProbe, Eclipse Profiler
Commercial: Jprofiler, OptimizeIt,

Appium, UI Automator

Service testing LoadUI, SOAPUI

Load testing

Open Source: Apache JMeter, Grinder,
Apache Bench, HTTPPerf
Commercial: HP LoadRunner, NeoLoad,
BlazeMeter

Application performance monitoring (APM)
(Layer wise monitoring of application code)

Performance Assessment Report
Based on the detailed performance assessment, we can provide the assessment report. In this
section, we have detailed the common recommendations for each of the layers.

Recommended Next Steps for Web Performance Optimization

In table 2, we have provided the main problem patterns and performance optimizations that can be
done on the presentation layer.

Numerous JS and CSS files

Each of the pages has on
an average 20+ JS files,
18+ CSS files which are
not minified

Merge and minify CSS and JS files to
create minimal number of files

Numerous images Many pages have 50+ images

• Reduce image number through
 CSS Sprite
• Compress images
• Lazily load the images

Positioning of JS and CSS files
All JavaScript files are placed
on top of the page which
blocks the page load

Place CSS at top and JS at bottom to
optimize perceived page load time

Non caching of static assets

In almost all pages, the
caching headers is not set for
static assets (images, JS, CSS
files). On an average we
found 10+ images have cache
headers missing

Based on the update frequency,
we need to set the cache headers
for static assets for optimal
performance.

Very high Time to
First Byte (TTF)

Very high TTF indicates
higher server response time

Need deep-dive analysis of
server side factors

Unused CSS files
On an average 3+ CSS pages
per page are not used Remove unused CSS files

Large page size
Static assets contribute to
high page size

Merging and minification along with
CSS Sprite should address this issue.
Enable HTML compression at web
server level

Table 2: Web Performance Optimizations

Problem Pattern Brief Description Suggested Remediation Step

Recommended Next Steps for Server-Side Performance Optimization
(Services And Database)

In table 3 we have provided the main problem patterns and performance optimizations that can be
done on server side (for database and services).

Numerous database
queries for each page

Database query in loop

Absence of caching

In few pages the common
data is reused and we make
duplicate database calls to
get common data (such as
user profile data)

Leverage coherence cache or object cache to
cache commonly used data and lookup values.

Fine tune IIB calls

Avoid WSRP calls
In couple of pages lfn
document is slow due
to WSRP calls

Avoid WSRP calls and fetch data
asynchronously or using light weight REST
calls/microservice calls

The IIB calls are taking
lot of time

IIB calls need to be optimized.

In some scenarios query is
invoked within a loop

We should completely avoid database calls in
a loop. To avoid this, we can either create an
oracle stored procedure to do all the database
heavy lifting operations and invoke the
stored procedure only once from the
application passing all needed parameters.

We noticed that sometimes
one page results in execution
of numerous queries

Minimize number of db calls.
One DB call per page is the best case scenario
Move all DB logic into database stored
procedure so that database engine can
do the heavy lifting
Fine tune all slow performing queries.
Use the batch/bulk query call
supported by hibernate

Table 3: Server side Performance Optimizations

Problem Pattern Brief Description Suggested Remediation Step

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”

I have tried to cover all the major parameters to keep in mind for performance assessment exercise.
Hope this helps to optimize your web development efforts. Feel free to reach out to me at
Shaileshkumar.Shivakumarasetty@mindtree.com for any queries.

Conclusion

1. https://medium.com/globalluxsoft/5-popular-software-development-models-with-their-pros-and-cons-12a486b569dc

References

Dr. Shailesh Kumar Shivakumar
Solution Architect

Dr. Shailesh Kumar Shivakumar has 19+ years of experience in a wide
spectrum of digital technologies including, enterprise portals, content
management systems, lean portals, and microservices. He holds a Ph.D.
degree in computer science and has authored eight technical books published
by the world’s top academic publishers such as Elsevier Science, Taylor and
Francis, Wiley/IEEE Press, and Apress. Dr. Shailesh has authored more than
14 technical white papers, five blogs, twelve textbook chapters for various
undergraduate and post-graduate programs and has contributed multiple
articles. He has published 20+ research papers in reputed international
journals. Dr. Shailesh holds two granted US patents, apart from ten patent
applications. Dr. Shailesh has presented multiple research papers at
international conferences. Dr. Shailesh’s Google Knowledge Graph can be
accessed at https://g.co/kgs/4YoaiN . He has successfully led several large
scale digital engagements for Fortune 500 clients. Shailesh can be reached at
Shaileshkumar.Shivakumarasetty@mindtree.com

