
Development models define the way projects are structured, the various phases of
the project delivery and the roles associated. In this whitepaper, we discuss various
development models along with their key characteristics and relevance. By
understanding the relevance of the development models, we can adopt the most
suitable model for the program.

Assembly line development is classic method and is used commonly across the globe. The model uses
waterfall execution methodology wherein each project phase flows in a sequential order, with strict
dependency on the previous phase.

This model consists of different designated roles for each responsibility. Most of the project activities such
as code review and testing is done manually in this model. This model has strict quality gates to ensure the
excellence of the software, and relies on heavy integration testing driven manually.

Introduction

Assembly Line Development Model

A PoV on Development Models

Whitepaper

In order to implement this model, we need to assign a designated role for each of the team members. The
roles include comprising front-end and back-end developers, and manual, integration and automation test
engineers etc. Each team member is only responsible for his/ her role.

The following are the execution steps to implement the assembly model:

1. Requirement understanding and analysis

2. Architecture and design

3. Development

4. Unit and functional testing

5. Deployment

Assembly Line Development Model Design

Lean supervisory development is an agile model where each team member has a clearly-defined
responsibility. In this model, each team member has end-to-end ownership toward sprint goals. Automated
tools are used for quality control, testing and release management. A continuous integration/continuous
delivery (CI/ CD) pipeline improves the process of development during integration/ testing, delivery and
deployment phases. The DevOps pipeline includes all stages like build, test, release, deploy, validation and
compliance. We deploy static code analysis tools like SonarQube to scan the code and report quality issues.
QA automation for UI and functional testing also gives instant feedback during build.

Given below are the main features of the lean supervisory model

• End-to-end ownership with developers

• CI/CD-based automation

• Code scanner for instant feedback

• QA automation

Lean Supervisory Development Model

Coding and
Unit Testing

Integration
Testing

 Requirement
understanding

 Design

 UI conversion

 Implementation

 Unit testing

 Integration and dev
testing

 Production testing

 Go-to-market

Review and
Integration

 Code review

 Secure code
Audit

 Code integration

Figure – 1: Assembly Line Model

We have defined the assembly model process in Figure 1

The implementation of a lean supervisory development model is effective only with the right resources and
tools. These resources consists of full stack development and this model is best suited with Agile OR Scaled
Agile frameworks. All the tools have to be properly investigated as per project need and then executed.
Following are the key success factors:

• Groom the features into detailed user stories with enough technical and user/ test scenarios

• Ensure code quality by multiple levels of code review like peer review on task level, architect review on
user story level, PO review on feature/ release level.

• Unit, system, integration and automation tests

• Static/ dynamic code analysis by automatic tooling

• Secure code analysis/ audit, pen test

Lean Supervisory Development Model Design

The modular development model is a modern way of development, and is an enhanced version of the lean
supervisory model for delivering high quality results. It includes all qualities of the lean supervisory model
with additional aspects like test-driven development. The team comprises the full stack developer and
SDET (Software Development Engineer in Test). The main driver of this model is end-to-end integrated
automation and automation.

Modular Development Model

Coding, Unit
Testing and Review

 Disciplined team and end-to-end ownership with
scrum team

 User story grooming in detail till task level

 Detailed design

 Unit system, integration and automation tests

 Static/ dynamic code analysis by automatic tooling

 Secure code analysis/ audit, pen testing

 Instant feedback

 External penetration testing

 CI/CD automated pipeline

 Integration and dev testing

 Production testing

 Go-to-market

Figure – 2 Lean Supervisory Model

Integration
Testing

In this section, we have compared the pros and cons of various delivery models.

Relevance of development models

The implementation of a modular development model is slightly complex and time-consuming in the initial
stage, when compared to a lean supervisor model. Forming a disciplined team could take sometime, given
that the tools need to be integrated properly with CI/ CD, which in turn leads to faster execution. Following
are the characteristics to be considered:

• Groom the features into detailed user stories with enough technical and user/ test scenarios

• Test Driven Development (TDD) approach for development

• Ensure code quality by multiple levels of code review like peer review on task level, architect review on
user story level, PO review on feature/ release level.

• Unit, system, integration and automation tests

• Static/ dynamic code analysis by automatic tools such as SonarQube, FindBugs

• Secure code analysis/ audit, pen testing

Modular Development Model Design

While we have compared the assembly line, lean supervisor and modular development models, it is
pertinent to note that all of them have their own pros and cons, depending on what you need.

Comparison of various development models

Figure 3 Modular Development Model

We have depicted the modular development model in Figure 3.

Coding,
Unit Testing,
Review and
Integration

Coding,
Unit Testing,
Review and
Integration

 Disciplined team

 SDET

 TDD approach for development

 Unit, system, integration and automation tests

 Static/ dynamic code analysis by automatic tooling

 Secure code analysis/ audit, pen test

 External penetration testing

 Fully CI/CD automated pipeline

 Go-to-market

The following table describes the best suited use cases –

Use cases of development models

The following are the tools that are used to enable a lean supervisor model:

• HP Fortify for secure code review

• SonarQube, ReSharper, Lint for Static code analysis

• Profiling, Memcheck, ValGrind for memory leaks

• Automation (Unit and UI testing)

• Obfuscation tools like Dot Obfuscator, DexGaurd, Themida

Best Practices

Assembly line model

Pros

Cons

Lean supervisor model Modular development model

• Simple structure and quick to
accomplish

• Suitable for small-to-midsize
projects

• Easy to test and analyze the
feature realization

 Secure code analysis/ audit,
pen test

• Works great for large-scale
products requiring constant
updating and always delivers
value based on a well
documented product

• The resulting features are always
better than the initial ones

• MVP is delivered quickly

• Works great for large-scale products
requiring constant updating and
always delivers value based on a
well documented product

• Team is motivated to make every
product feature perfect, and not just
accomplish the tasks

• The project requirements
should be well defined

• Sequential nature of the
project execution involves risk

• Review and integration is a
weak link

• Heavy integration testing and
automation in coverage is low

• Works great for large-scale
products requiring constant
updating and always delivers
value based on a well
documented product

• The resulting features are always
better than the initial ones

• The documentation needs to be
precise and a skilled analyst is
needed to ensure 100%
understanding of the requirements

• This approach is suited for
highly-skilled developers

• Tool costing is moderate to high

• Penetration testing tools like Burp Suite

• Confluence and Jira for project management

• Crucible, Jenkins for DevOps

• GitLab for source control management

Assembly
line model

Lean supervisor
model

Modular
development model

Best suited

Development velocity

Multi-vendor

Onboarding

Fluid requirements

Automation

Small to midsize
projects

High

Most used

Shortest

Suited

Low

Mid to large size
projects

Moderate

Gaining adoption

Moderate

Adoptable with automation

Moderate to high

Large size projects

Slow

Least used

Longest

Least suited

Very high

1. https://medium.com/globalluxsoft/5-popular-software-develop-
ment-models-with-their-pros-and-cons-12a486b569dc

References

Given below are the key best practices:

• The design should be properly documented.

• The team should identify all the dependencies and get the proper resolution plan from dependent team
during planning.

• Product documentation should be driven from confluence wiki and requirements execution must be
driven from JIRA.

• Each JIRA story should be linked to reviews and test cases. Once the code is successfully reviewed and all
the test cases are successfully completed, we can close the JIRA story.

• JIRA XRAY plugin can be used for integrating the test cases directly to user stories to automatically
generate the automated report.

Use cases of development models

The following are the tools that are used to enable a lean supervisor model:

• HP Fortify for secure code review

• SonarQube, ReSharper, Lint for Static code analysis

• Profiling, Memcheck, ValGrind for memory leaks

• Automation (Unit and UI testing)

• Obfuscation tools like Dot Obfuscator, DexGaurd, Themida

Figure 4 – Lean supervisory model best practices

We have depicted the key best practices for lean supervisory model in Figure 4

• Penetration testing tools like Burp Suite

• Confluence and Jira for project management

• Crucible, Jenkins for DevOps

• GitLab for source control management

End-to-end
ownership by
scrum team

Ensure code
quality by

multiple levels
of code review

Unit, system,
integrated and
automation
testing

Right tooling for
review, code audit

and security

Fully-automated
and secure CI/CD

pipeline
Go-to-market

About Mindtree

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility to achieve competitive
advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its deep domain knowledge to 275+ enterprise client
engagements to break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation. Operating in more than 15
countries across the world, we’re consistently regarded as one of the best places to work, embodied every day by our winning culture made up of over
22,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

www.mindtree.com

About the authors

He is a mobile architect with around 14 years of IT experience. He has worked

on multiple mobile application and SDKs, and has vast experience in design and

developing an application from scratch in different technology variance apps

like native, cross and hybrid applications. Ramesh has also streamlined teams

towards effectively using secure and best dev practices and improved the

fully-automated CI/CD pipeline, translating to correct, on time delivery.

Ramesh Kumar

He has 19+ years of experience in a wide spectrum of digital technologies

including, enterprise portals, content management systems, lean portals and

microservices. Dr. Shailesh holds a PhD degree in computer science and has

authored eight technical books published by the world’s top academic

publishers such as Elsevier Science, Taylor and Franscis, Wiley/IEEE Press and

Apress. Dr. Shailesh has authored more than 14 technical white papers, five

blogs, twelve textbook chapters for various under-graduate and post graduate

Dr. Shailesh Kumar Shivakumar

programs and has contributed multiple articles. He has published 20+ research papers in reputed international

journals. Dr. Shailesh holds two granted US patents, apart from ten patent applications. Dr. Shailesh has

presented multiple research papers in international conferences. Dr. Shailesh’s Google Knowledge Graph can

be accessed at https://g.co/kgs/4YoaiN . He has successfully led several large scale digital engagements for

Fortune 500 clients. Shailesh can be reached at Shaileshkumar.Shivakumarasetty@mindtree.com

