
A Mindtree Whitepaper

Building an
In-house DevOps Platform

DevOps is an integral part of all modern applications.
DevOps automates the release management activities along with quality
control and productivity improvement measures. In this white paper,
we discuss building an DevOps platform for a mobility solution.

Introduction

Key tenets of DevOps

DevOps Advantages

DevOps promotes a culture of collaboration, fosters the philosophy of iterative releases, and
supports the agile methodology. DevOps practice complements the agile methodology through
improved and automated quality measures. We could also explore other automation possibilities
such as automated testing and automated release management in the DevOps practice.

DevOps is a culture, movement, or practice that emphasizes the collaboration and communication
of both software developers and other information-technology (IT) professionals while automating
the process of software delivery and infrastructure changes.

Given below are the main tenets of DevOps practice:
• Continuous Build: In this practice, the developers continuously develop the code and check into
 a centralized repository for building the feature or a story. We setup the governance for
 automated quality checks.
• Continuous Integration: This is a DevOps software development practice where developers
 regularly merge their code changes into a central repository, after which automated builds
 and tests are run.
• Continuous Deployment: In continuous deployment, every change that passes the automated
 tests is deployed to various environments automatically.
• Continuous testing: This is a practice where the new version of an application is rigorously
 tested to ensure that it meets all desired system qualities. It is important that all relevant
 aspects - functionality, security, performance, or compliance are verified. We continuously run
 automated unit tests, functional tests, and regression tests.
• Continuous Monitoring: This practice helps identify issues or bottlenecks in the end-to-end
 pipeline and helps make the pipeline effective. We carry out various automated monitoring
 practices such as server health check monitoring, application monitoring, performance
 monitoring, security monitoring, and such.
• Iterative release: As part of the agile delivery model, we deliver the features in various iterations
• Modular development: The code components are developed as loosely coupled, reusable,
 independent modules.
• Automation: We need to automate the key activities such as code review, build, deployment,
 testing, and monitoring.

Increased release
velocity due to

continuous
development and

integration methodology

Increased
productivity

due to
automation

Increased delivery
quality due to

automated quality
controls

Reduced risk due
to automated

quality controls

Improved
performance

due to automated
monitoring

Figure 1: InHouse DevOps overview

Need for In-house DevOps
Streamlined and automated CI/CD bringing in no licensing cost by utilizing inhouse / open source
tool, provides a readymade framework for any new project to bootstrap quickly, which will largely
influence the ability to meet timeline with quality delivery. We have depicted a sample of continuous
integration (CI) and continuous deployment (CD) processes for in-house DevOps in Figure 1.

In-house DevOps

In this section, we shall look at the main design considerations, drivers and motivations for
In-house DevOps model.

In-house DevOps essentially involves building a DevOps platform within an organization using
open source DevOps tools. This provides us with greater control over the DevOps pipeline and
processes. In few scenarios, due to data security and privacy concerns, organizations restrict the
data that is sent out of the organization, in such cases In-house DevOps comes in handy.

Drivers and Motivations

Essentially In-house DevOps involves leveraging the organizational knowledge and open source
tools to build a robust DevOps platform. Let us look at various aspects of the In-house DevOps.

Continuous
IntegrationSource Code

Repository

Continuous
Deployment

Developers

Pull / Push

Auto Poll &
Manual Trigger

User Group (UAT , Business, Quality Assurance)

Distribute

Artefacts
Upload

Quality Metrics

Drivers for In-house DevOps

Implementation

Advantages

The main advantages of In-house DevOps are as follows
• In-house DevOps is easy to setup and configure
• Low cost infrastructure dependency
• Optimized license cost due to usage of open source tools
• Ability to build multiple technology based apps and services
• Flexibility to integrate, quality profiles, and multiple build flavors
• Leverage existing collaboration and communication model within the organization
• Leverage the deep knowledge of organizational policies, software to build a robust DevOps
• Quick bootstrapping projects for CI/CD
• Automated, Streamlined and quality build release management
• Greatly improves Release management with streamlined process
• Greatly improves the QA Strategy and plan with a definite timeline for build releases
• Greatly improves development time and saves time for build release activities
• Removes dependency of local PC based / developer based build release activities
• Flexibility to create new build flavor and distribution groups
• Helps to maintain the backup of build artifacts
• Helps to identify the code quality and build status for every commit sent by the development team.

Given below are the main drivers for in-house DevOps:

In this section, we detail the implementation details of building a robust in-house DevOps platform

Need for open
source tools

High license cost
for available

SaaS solutions

Make effective use
of whitelisted

softwares within
organization

Pre-requisites for overall DevOps and Release management

Given below are the main pre-requisites for the in-house DevOps:
• Source code management system (SCM) to manage the source control
• Build server to setup the DevOps infrastructure
• Opensource DevOps setup that enables multiple technology profiles with the ability to integrate
 build tools, quality profiles and options to configure multiple build pipelines
• Ability to remote trigger build is a good to have option when a manual build trigger is required
• Build environment strategy including the number of build environments to consider
• Branching strategy and code review strategy
• Build steps and activities to be performed
• Build numbering strategy, source code Tagging
• Dependency manager and Build tools
• Quality profile tool and quality gate profile for the builds
• Security tool for security testing
• Testing tools such as unit testing tool and functional testing tool
• Build status alerts and notification strategy
• App distribution strategy for each build flavor/pipeline
• App promotion strategy

Tools and strategy consideration
Given below are the various sample tools that can be used for implementing
an in-house DevOps strategy:
Category Sample Tool
Source Code Management SVN, Gitlab, Bitbucket
DevOps Jenkins
Build Machine iMac
Build Technology Android and iOS
Quality Profile SonarLint , SwiftLink, Android Kotlin, SonarQube,
 OWASP Dependency Check
Build Tools Gradle , XCode
Monitoring Nagios, Splunk
Code Analysis SonarQube, FindBugs, Checkstyle, JSLint
Code Coverage Clover
CI Tools Jenkins
Version Increment Auto increment on patch version
 Manual configuration for major.minor
Alerts and Notification On build failure with changelist
 On successful upload of build artefacts
Security Tool Burp Suite, AppScan
Testing Tools Junit, Selenium, JMeter
App Distribution AppCenter, Playstore alpha/beta, TestFlight
App Promotion Base on QA sign off

Figure 2: Steps to configure DevOps

Steps to configure the DevOps setup
In this section we have detailed the sample steps to configure an in-house DevOps system.
The setup is mainly configured for mobility solutions.

Source Code Management Phase

As a first step, we need to setup the source control repository such as SVN. As part of this
we need to implement the branching strategy to manage the code needed across various
environments and to implement the code promotion. We should also finalize the code
review tool and commit the baseline code.

DevOps Setup Phase

The second step mainly involves setting up the DevOps tools on the server. In this
example we setup the Jenkins and SonarScanner. We need to setup the connection
between SVN repository and the DevOps server. We can then setup the build process
using Jenkins for specified SVN branches. We can install the AppCenter upload plugin to
push the built artifact to the AppCenter. The extracted app tokens should be configured
for artifact upload.

Mobile app distribution phase

To distribute the app we should login to AppCenter and create the organization and
distribution groups. We should invite the relevant group members and configure the
AppCenter apps for each build flavor. We should configure the TestFlight, Play store
Alpha, Play Store Beta and Playstore Production for app distribution.

Setup SVN Repo
iMAC setup with

Apache and Jenkins,
Java, SonarScanner

AppCenter
Login

TestFlight
Configure

Play Store
Alpha

Play Store
Beta

Play Store
Production

Create
Organization

Create Distribution
Groups

Invite Relevant
Group Member

Create AppCenter
apps for each
build flavor

Extract App Tokens
for artefact

upload

Whitelist the
SVN Repo for Poll
and checkout access

Configure Jenkins Job
for each build flavour
with SVN repo, Branch

Integrate AppCenter
upload plugin

Configure App Token

Apply
Branching
Strategy

Setup
Code Review

Tool

Commit
Base Code

Source Code
Management DevOps Setup App Distribution

Integrate Build step
to upload artefact

Figure 3 Sample In-house DevOps Setup

We have depicted a sample setup of In-house DevOps in Figure 3

Best Practices

Given below are some of the key best practices of In-house DevOps model:
1. Instead of triggering build for every commit, trigger build once in every hour such that commits
 in last one hour get consolidated
2. Stagger the auto build pipeline trigger for any build variant by an hour apart to avoid
 overloading builds or making them wait in build pipeline
3. Enable remote trigger capability for flexible build trigger
4. Use environment variable, keystore for access keys, certificates, and URLs to avoid direct
 access in the script
5. Do not use incremental builds for any builds going to QA and other testing purpose
6. Enable artifact upload capability directly to Playstore alpha/beta or TestFlight from Pipeline

Create backlog,
track bugs, assign
tasks to developers

Code repository with
defined branching &
merging strategy

Build Pipelines of Jenkins in the CI orchestrator
to trigger builds, Sonar code quality scans,
test scripts/tools with bug reports

The Release Pipelines to pull artefact and deploy it on
target environment on the server VM

1 2 3 4

Plan

Plan Version
Control

Common Tools

Code Commit

Static Analysis

Bug Report

Auto Bug creation
upon tests fail

Reporting
Dashboards
for App &
Infrastructure

Continuous Monitoring

Testing
Tests
Pass

Artifact
Pull

Non-Prod Prod

Artifacts
Management

Deploy

Build

DevOps Capabilities*

DEV QA UAT
PRE

PROD

Build & Create artifacts
of versioned pbix files

Jfrog Artefact
Repository

Continuous Deployments
Controlled
Deployments

Create a Power BI workspace,
configure and publish Power BI
files on target environments

SCM CI – Build, Integrate, Test CD - Release, Deploy

JEST

Config.
Mgmt.

5

Developer

Code Commit

Developer

Sandhya
Senior Architect

Dr. Shailesh Kumar Shivakumar
Solution Architect

About Mindtree

Sandhya is a Mobile Architect who has worked on multiple mobile projects
with the in-house devops setup and configuration of these systems. With a
hands-on experience of using in-house setup and identifying real benefits of
streamlined release management, she has greatly helped in delivering quality
apps to the customers.

Dr. Shailesh Kumar Shivakumar has 19+ years of experience in a wide
spectrum of digital technologies including, enterprise portals, content
management systems, lean portals, and microservices. Dr. Shailesh holds a
PhD degree in computer science and has authored eight technical books
published by the world’s top academic publishers such as Elsevier Science,
Taylor and Franscis, Wiley/IEEE Press, and Apress. Dr. Shailesh has authored
more than 14 technical white papers, five blogs, twelve textbook chapters for
various under-graduate and post graduate programs and has contributed
multiple articles. He has published 20+ research papers in reputed
international journals. Dr. Shailesh holds two granted US patents, apart from
ten patent applications. Dr. Shailesh has presented multiple research papers
at international conferences. Dr. Shailesh’s Google Knowledge Graph can be
accessed at https://g.co/kgs/4YoaiN . He has successfully led several large
scale digital engagements for Fortune 500 clients. Shailesh can be reached at
Shaileshkumar.Shivakumarasetty@mindtree.com

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry
scale with agility to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group
Company, Mindtree applies its deep domain knowledge to 260 enterprise client engagements to break down silos,
make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business
innovation. Operating in 24 countries across the world, we’re consistently regarded as one of the best places to
work, embodied every day by our winning culture made up of over 27,000 entrepreneurial, collaborative and
dedicated “Mindtree Minds.”

