
II. TRADITIONAL METHOD OF SECURING
 DATA
One of the most common methods used for securing data
is encryption. In this method, the data to be secured is
encrypted using one of the several encryption algorithms
like RSA, AES, 3DES, among others. One of the main issues
with traditional encryption techniques is that as long as the
key is secured, the data is secured. However, in scenarios
which require sharing of this encrypted data, the receiver
must have this key to decrypt the same. Given this aspect
of sharing the key with the receiver makes the whole
process vulnerable.

III. INTRODUCTION TO RE-ENCRYPTION
Re-encryption is a form of public-key encryption with a
few changes. Traditionally, in case of public-key encryption,
if the encrypted data is shared with someone to be
decrypted, the receiver would require the sender's private
key - thus requiring an exchange of keys. In the case of
re-encryption, a re-encryption key gets generated. This key
can be shared instead of sharing private key. The same key
can then be used to re-encrypt the data in terms of
receiver's public key which the receiver can easily decrypt
using his/her private key. This process can be elaborated
further by the following process:

ABSTRACT
The process of managing data has transformed completely since the evolution of digital era. Earlier, most of the data was
on paper or in the form of printed material. However, today, every organization has shifted either towards the usage of
digitalized data or is slowly moving in that direction. Though data-managing becomes much easier through digitalization,
it also opens a variety of new security risks that can pose harm. The main goal of the proposed framework is to eliminate
these risks and also to provide access management facility, offering the user absolute control of their data.

I. INTRODUCTION
Since the past decade, the world is gradually moving towards digitizing everything. It is because of this digitization that
the value of data has been growing exponentially and is considered one of the most expensive commodities in the
world. With this digitization of data comes several problems like data security, data storage, access control/ ownership
of data, among others.

Though there are many ways to keep the data secure, there have always been loopholes or points of vulnerability
which can be used to gain unauthorized access to data. The proposed framework can help avoid these loopholes and
make data more secure while sharing or when stored in a database. The proposed framework uses the concept of
re-encryption to achieve this, elaborated in the subsequent sections of the paper.

WHITEPAPER

 Another aspect of this is that the policy data can be
 updated only by the person uploading it. In the
 process explained above, there is a vulnerable point,
 i.e. the access policy stored in the database can be
 susceptible to tampering in case of a data breach.

Proxy Re-Encryption-based
Data Sharing Framework

The activity diagram of the above explained flow is as
follows:

Some points need to be noted here as follows:

 The re-encryption scheme is unidirectional. This key
 enables the transformation of encrypted data or
 ciphertext only in one direction, i.e., from Alice to Bob in
 this case [1].

 The re-encryption key generated here can be re-encrypt
 any data which is encrypted using Alice's public-key.

 The process of re-encryption can be multi-hop, i.e., the
 re-encrypted data can be re-encrypted again [1].

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and the receiver's private key
 is still required to decrypt the data.

With the help of the above flow, one can see that this
process automatically eliminates one of the significant
vulnerability points i.e. exchanging of keys between the
parties. At the same time, it also presents a vulnerability
that as stated above - the re-encryption key generated
here can re-encrypt any data which is encrypted using
Alice's public-key. It's not a good idea to share the
re-encryption key with Bob as that will enable him to
access that data also which he was not provided access
by Alice.

Hence, to overcome the vulnerability cited above, there
should be a system which acts as a mediator, enforcing
access control policies specified by the user without
actually knowing the actual data and without sharing the
re-encryption keys with any of the recipients.

IV. THE RE-ENCRYPTION FRAMEWORK
As mentioned in the previous section, this framework
proposes a system which acts as a mediator that enforces
the access control policies as provided by the user in
addition to the normal re-encryption process explained
before. This mediator system could merely be a server
exposing some API for this operation or a smart contract
deployed on a blockchain platform enforcing the access
policies as specified by the user.

This process can be further understood with the help of
the following flow:

Some of the advantages of the proposed framework are
as follows:

 The data uploaded in the database is in encrypted form,
 so even if there is a breach in the database, the actual
 data would not be exposed.

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and will still require the
 receiver’s private key to decrypt the data.

 As mentioned before, there isn't any actual exchange of
 private keys happening.

 This whole process is pluggable and can be implemented
 on top of any system requiring exchanging of data
 between the parties.

 The concept of policy enforcing and storing can also be
 implemented using Blockchain Smart Contract, thus
 increasing the availability and security of the system.

 Using this framework gives a user absolute ownership
 of the data. Though the data is stored in a database
 collectively, all of it is encrypted, so unless a user
 provides access to data by themselves, no one can
 access it.

V. POSSIBLE APPLICATIONS
As mentioned earlier, this framework can be applied
anywhere there is a requirement of data exchange
between two different parties. Some of the possible
scenarios of its application are as follows:

 In case of sharing medical documents, every time a
 person goes to a hospital or clinic for consultancy or
 treatment, he/she needs to share the past medical
 records and document with the doctor to proceed.
 This framework can be used here, where the user can
 choose what, and to whom to share the medical
 documents.

 In case of Digital Identity, in the present scenario,
 there is always a need to prove one's identity to
 initiate a process such a visa application, purchasing a
 new internet connection or anything else. This
 framework can be used by the users to share their
 identity document with the vendor/organization when
 required. Users can also have the ability to revoke
 access in case the user changes his/her mind, or the
 process is complete.

There are many other use cases as well, but the essence of
all of them remain the same i.e., ‘Sharing of Data.’ This
framework can also be used to keep track of data access by
someone else which can prove to be a handy feature for
auditing purposes, as well as to avoid the misuse of data.

VI. FURTHER IMPROVEMENTS
Though the framework solves many security issues which
one may encounter while sharing data currently, there are
some points which can further be improved:

Fig. 1. Re-encryption Process

1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file request to Alice.

3. On accepting this request, Alice generates a
 re-encryption key and sends it to Bob.

4. Bob can get the encrypted data from the database
 and re-encrypts it using the re-encryption key

provided by Alice and decrypt it using his private key.

 A significant issue is key management. From an
 end-user point of view, one can understand that the
 cryptographic keys involved are long and almost
 impossible for a user to memorize. There needs to be
 a way to manage these cryptographic keys (public key
 and private key); it can be through a hardware wallet
 or any other method which ensures that the keys
 remain safe, enabling the user to use them with
 simplicity.

References
[1] DAVID NU~NEZ, “UMBRAL: A THRESHOLD PROXY RE-ENCRYPTION SCHEME”

Fig. 2. Proxy Re-Encryption Flow

II. TRADITIONAL METHOD OF SECURING
 DATA
One of the most common methods used for securing data
is encryption. In this method, the data to be secured is
encrypted using one of the several encryption algorithms
like RSA, AES, 3DES, among others. One of the main issues
with traditional encryption techniques is that as long as the
key is secured, the data is secured. However, in scenarios
which require sharing of this encrypted data, the receiver
must have this key to decrypt the same. Given this aspect
of sharing the key with the receiver makes the whole
process vulnerable.

III. INTRODUCTION TO RE-ENCRYPTION
Re-encryption is a form of public-key encryption with a
few changes. Traditionally, in case of public-key encryption,
if the encrypted data is shared with someone to be
decrypted, the receiver would require the sender's private
key - thus requiring an exchange of keys. In the case of
re-encryption, a re-encryption key gets generated. This key
can be shared instead of sharing private key. The same key
can then be used to re-encrypt the data in terms of
receiver's public key which the receiver can easily decrypt
using his/her private key. This process can be elaborated
further by the following process:

ABSTRACT
The process of managing data has transformed completely since the evolution of digital era. Earlier, most of the data was
on paper or in the form of printed material. However, today, every organization has shifted either towards the usage of
digitalized data or is slowly moving in that direction. Though data-managing becomes much easier through digitalization,
it also opens a variety of new security risks that can pose harm. The main goal of the proposed framework is to eliminate
these risks and also to provide access management facility, offering the user absolute control of their data.

I. INTRODUCTION
Since the past decade, the world is gradually moving towards digitizing everything. It is because of this digitization that
the value of data has been growing exponentially and is considered one of the most expensive commodities in the
world. With this digitization of data comes several problems like data security, data storage, access control/ ownership
of data, among others.

Though there are many ways to keep the data secure, there have always been loopholes or points of vulnerability
which can be used to gain unauthorized access to data. The proposed framework can help avoid these loopholes and
make data more secure while sharing or when stored in a database. The proposed framework uses the concept of
re-encryption to achieve this, elaborated in the subsequent sections of the paper.

www.mindtree.com 2

 Another aspect of this is that the policy data can be
 updated only by the person uploading it. In the
 process explained above, there is a vulnerable point,
 i.e. the access policy stored in the database can be
 susceptible to tampering in case of a data breach.

The activity diagram of the above explained flow is as
follows:

Some points need to be noted here as follows:

 The re-encryption scheme is unidirectional. This key
 enables the transformation of encrypted data or
 ciphertext only in one direction, i.e., from Alice to Bob in
 this case [1].

 The re-encryption key generated here can be re-encrypt
 any data which is encrypted using Alice's public-key.

 The process of re-encryption can be multi-hop, i.e., the
 re-encrypted data can be re-encrypted again [1].

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and the receiver's private key
 is still required to decrypt the data.

With the help of the above flow, one can see that this
process automatically eliminates one of the significant
vulnerability points i.e. exchanging of keys between the
parties. At the same time, it also presents a vulnerability
that as stated above - the re-encryption key generated
here can re-encrypt any data which is encrypted using
Alice's public-key. It's not a good idea to share the
re-encryption key with Bob as that will enable him to
access that data also which he was not provided access
by Alice.

Hence, to overcome the vulnerability cited above, there
should be a system which acts as a mediator, enforcing
access control policies specified by the user without
actually knowing the actual data and without sharing the
re-encryption keys with any of the recipients.

IV. THE RE-ENCRYPTION FRAMEWORK
As mentioned in the previous section, this framework
proposes a system which acts as a mediator that enforces
the access control policies as provided by the user in
addition to the normal re-encryption process explained
before. This mediator system could merely be a server
exposing some API for this operation or a smart contract
deployed on a blockchain platform enforcing the access
policies as specified by the user.

This process can be further understood with the help of
the following flow:

Some of the advantages of the proposed framework are
as follows:

 The data uploaded in the database is in encrypted form,
 so even if there is a breach in the database, the actual
 data would not be exposed.

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and will still require the
 receiver’s private key to decrypt the data.

 As mentioned before, there isn't any actual exchange of
 private keys happening.

 This whole process is pluggable and can be implemented
 on top of any system requiring exchanging of data
 between the parties.

 The concept of policy enforcing and storing can also be
 implemented using Blockchain Smart Contract, thus
 increasing the availability and security of the system.

 Using this framework gives a user absolute ownership
 of the data. Though the data is stored in a database
 collectively, all of it is encrypted, so unless a user
 provides access to data by themselves, no one can
 access it.

V. POSSIBLE APPLICATIONS
As mentioned earlier, this framework can be applied
anywhere there is a requirement of data exchange
between two different parties. Some of the possible
scenarios of its application are as follows:

 In case of sharing medical documents, every time a
 person goes to a hospital or clinic for consultancy or
 treatment, he/she needs to share the past medical
 records and document with the doctor to proceed.
 This framework can be used here, where the user can
 choose what, and to whom to share the medical
 documents.

 In case of Digital Identity, in the present scenario,
 there is always a need to prove one's identity to
 initiate a process such a visa application, purchasing a
 new internet connection or anything else. This
 framework can be used by the users to share their
 identity document with the vendor/organization when
 required. Users can also have the ability to revoke
 access in case the user changes his/her mind, or the
 process is complete.

There are many other use cases as well, but the essence of
all of them remain the same i.e., ‘Sharing of Data.’ This
framework can also be used to keep track of data access by
someone else which can prove to be a handy feature for
auditing purposes, as well as to avoid the misuse of data.

VI. FURTHER IMPROVEMENTS
Though the framework solves many security issues which
one may encounter while sharing data currently, there are
some points which can further be improved:

Fig. 1. Re-encryption Process

1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file request to Alice.

3. On accepting this request, Alice generates a
 re-encryption key and sends it to Bob.

4. Bob can get the encrypted data from the database
 and re-encrypts it using the re-encryption key

provided by Alice and decrypt it using his private key.
1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file access request to access some files
 of Alice to the proxy server.

3. The proxy server will check with the existing policies
 that if Bob is allowed access to that file. If no such
 policy exists, it will send the request to Alice to
 either accept or reject the request.

4. If Alice accepts the request, a new policy will be
 created stating the files allowed, tenure for which
 the access is allowed and the re-encryption key will
 be sent to the proxy server, and Bob will be notified
 that the file requested is available.

5. The proxy server will save this policy in the database
 along with the re-encryption key.

6. Now, when Bob tries to access this file, the proxy
 server will pull Alice's encrypted file along with
 re-encryption key if the access policy is still valid.

7. The proxy server will re-encrypt the file using the
 re-encryption key retrieved from the database
 previously and send the re-encrypted data to Bob.

 A significant issue is key management. From an
 end-user point of view, one can understand that the
 cryptographic keys involved are long and almost
 impossible for a user to memorize. There needs to be
 a way to manage these cryptographic keys (public key
 and private key); it can be through a hardware wallet
 or any other method which ensures that the keys
 remain safe, enabling the user to use them with
 simplicity.

References
[1] DAVID NU~NEZ, “UMBRAL: A THRESHOLD PROXY RE-ENCRYPTION SCHEME”

Fig. 2. Proxy Re-Encryption Flow

II. TRADITIONAL METHOD OF SECURING
 DATA
One of the most common methods used for securing data
is encryption. In this method, the data to be secured is
encrypted using one of the several encryption algorithms
like RSA, AES, 3DES, among others. One of the main issues
with traditional encryption techniques is that as long as the
key is secured, the data is secured. However, in scenarios
which require sharing of this encrypted data, the receiver
must have this key to decrypt the same. Given this aspect
of sharing the key with the receiver makes the whole
process vulnerable.

III. INTRODUCTION TO RE-ENCRYPTION
Re-encryption is a form of public-key encryption with a
few changes. Traditionally, in case of public-key encryption,
if the encrypted data is shared with someone to be
decrypted, the receiver would require the sender's private
key - thus requiring an exchange of keys. In the case of
re-encryption, a re-encryption key gets generated. This key
can be shared instead of sharing private key. The same key
can then be used to re-encrypt the data in terms of
receiver's public key which the receiver can easily decrypt
using his/her private key. This process can be elaborated
further by the following process:

ABSTRACT
The process of managing data has transformed completely since the evolution of digital era. Earlier, most of the data was
on paper or in the form of printed material. However, today, every organization has shifted either towards the usage of
digitalized data or is slowly moving in that direction. Though data-managing becomes much easier through digitalization,
it also opens a variety of new security risks that can pose harm. The main goal of the proposed framework is to eliminate
these risks and also to provide access management facility, offering the user absolute control of their data.

I. INTRODUCTION
Since the past decade, the world is gradually moving towards digitizing everything. It is because of this digitization that
the value of data has been growing exponentially and is considered one of the most expensive commodities in the
world. With this digitization of data comes several problems like data security, data storage, access control/ ownership
of data, among others.

Though there are many ways to keep the data secure, there have always been loopholes or points of vulnerability
which can be used to gain unauthorized access to data. The proposed framework can help avoid these loopholes and
make data more secure while sharing or when stored in a database. The proposed framework uses the concept of
re-encryption to achieve this, elaborated in the subsequent sections of the paper.

www.mindtree.com 3

 Another aspect of this is that the policy data can be
 updated only by the person uploading it. In the
 process explained above, there is a vulnerable point,
 i.e. the access policy stored in the database can be
 susceptible to tampering in case of a data breach.

The activity diagram of the above explained flow is as
follows:

Some points need to be noted here as follows:

 The re-encryption scheme is unidirectional. This key
 enables the transformation of encrypted data or
 ciphertext only in one direction, i.e., from Alice to Bob in
 this case [1].

 The re-encryption key generated here can be re-encrypt
 any data which is encrypted using Alice's public-key.

 The process of re-encryption can be multi-hop, i.e., the
 re-encrypted data can be re-encrypted again [1].

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and the receiver's private key
 is still required to decrypt the data.

With the help of the above flow, one can see that this
process automatically eliminates one of the significant
vulnerability points i.e. exchanging of keys between the
parties. At the same time, it also presents a vulnerability
that as stated above - the re-encryption key generated
here can re-encrypt any data which is encrypted using
Alice's public-key. It's not a good idea to share the
re-encryption key with Bob as that will enable him to
access that data also which he was not provided access
by Alice.

Hence, to overcome the vulnerability cited above, there
should be a system which acts as a mediator, enforcing
access control policies specified by the user without
actually knowing the actual data and without sharing the
re-encryption keys with any of the recipients.

IV. THE RE-ENCRYPTION FRAMEWORK
As mentioned in the previous section, this framework
proposes a system which acts as a mediator that enforces
the access control policies as provided by the user in
addition to the normal re-encryption process explained
before. This mediator system could merely be a server
exposing some API for this operation or a smart contract
deployed on a blockchain platform enforcing the access
policies as specified by the user.

This process can be further understood with the help of
the following flow:

Some of the advantages of the proposed framework are
as follows:

 The data uploaded in the database is in encrypted form,
 so even if there is a breach in the database, the actual
 data would not be exposed.

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and will still require the
 receiver’s private key to decrypt the data.

 As mentioned before, there isn't any actual exchange of
 private keys happening.

 This whole process is pluggable and can be implemented
 on top of any system requiring exchanging of data
 between the parties.

 The concept of policy enforcing and storing can also be
 implemented using Blockchain Smart Contract, thus
 increasing the availability and security of the system.

 Using this framework gives a user absolute ownership
 of the data. Though the data is stored in a database
 collectively, all of it is encrypted, so unless a user
 provides access to data by themselves, no one can
 access it.

V. POSSIBLE APPLICATIONS
As mentioned earlier, this framework can be applied
anywhere there is a requirement of data exchange
between two different parties. Some of the possible
scenarios of its application are as follows:

 In case of sharing medical documents, every time a
 person goes to a hospital or clinic for consultancy or
 treatment, he/she needs to share the past medical
 records and document with the doctor to proceed.
 This framework can be used here, where the user can
 choose what, and to whom to share the medical
 documents.

 In case of Digital Identity, in the present scenario,
 there is always a need to prove one's identity to
 initiate a process such a visa application, purchasing a
 new internet connection or anything else. This
 framework can be used by the users to share their
 identity document with the vendor/organization when
 required. Users can also have the ability to revoke
 access in case the user changes his/her mind, or the
 process is complete.

There are many other use cases as well, but the essence of
all of them remain the same i.e., ‘Sharing of Data.’ This
framework can also be used to keep track of data access by
someone else which can prove to be a handy feature for
auditing purposes, as well as to avoid the misuse of data.

VI. FURTHER IMPROVEMENTS
Though the framework solves many security issues which
one may encounter while sharing data currently, there are
some points which can further be improved:

Fig. 1. Re-encryption Process

1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file request to Alice.

3. On accepting this request, Alice generates a
 re-encryption key and sends it to Bob.

4. Bob can get the encrypted data from the database
 and re-encrypts it using the re-encryption key

provided by Alice and decrypt it using his private key.
1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file access request to access some files
 of Alice to the proxy server.

3. The proxy server will check with the existing policies
 that if Bob is allowed access to that file. If no such
 policy exists, it will send the request to Alice to
 either accept or reject the request.

4. If Alice accepts the request, a new policy will be
 created stating the files allowed, tenure for which
 the access is allowed and the re-encryption key will
 be sent to the proxy server, and Bob will be notified
 that the file requested is available.

5. The proxy server will save this policy in the database
 along with the re-encryption key.

6. Now, when Bob tries to access this file, the proxy
 server will pull Alice's encrypted file along with
 re-encryption key if the access policy is still valid.

7. The proxy server will re-encrypt the file using the
 re-encryption key retrieved from the database
 previously and send the re-encrypted data to Bob.

 A significant issue is key management. From an
 end-user point of view, one can understand that the
 cryptographic keys involved are long and almost
 impossible for a user to memorize. There needs to be
 a way to manage these cryptographic keys (public key
 and private key); it can be through a hardware wallet
 or any other method which ensures that the keys
 remain safe, enabling the user to use them with
 simplicity.

References
[1] DAVID NU~NEZ, “UMBRAL: A THRESHOLD PROXY RE-ENCRYPTION SCHEME”

Fig. 2. Proxy Re-Encryption Flow

II. TRADITIONAL METHOD OF SECURING
 DATA
One of the most common methods used for securing data
is encryption. In this method, the data to be secured is
encrypted using one of the several encryption algorithms
like RSA, AES, 3DES, among others. One of the main issues
with traditional encryption techniques is that as long as the
key is secured, the data is secured. However, in scenarios
which require sharing of this encrypted data, the receiver
must have this key to decrypt the same. Given this aspect
of sharing the key with the receiver makes the whole
process vulnerable.

III. INTRODUCTION TO RE-ENCRYPTION
Re-encryption is a form of public-key encryption with a
few changes. Traditionally, in case of public-key encryption,
if the encrypted data is shared with someone to be
decrypted, the receiver would require the sender's private
key - thus requiring an exchange of keys. In the case of
re-encryption, a re-encryption key gets generated. This key
can be shared instead of sharing private key. The same key
can then be used to re-encrypt the data in terms of
receiver's public key which the receiver can easily decrypt
using his/her private key. This process can be elaborated
further by the following process:

ABSTRACT
The process of managing data has transformed completely since the evolution of digital era. Earlier, most of the data was
on paper or in the form of printed material. However, today, every organization has shifted either towards the usage of
digitalized data or is slowly moving in that direction. Though data-managing becomes much easier through digitalization,
it also opens a variety of new security risks that can pose harm. The main goal of the proposed framework is to eliminate
these risks and also to provide access management facility, offering the user absolute control of their data.

I. INTRODUCTION
Since the past decade, the world is gradually moving towards digitizing everything. It is because of this digitization that
the value of data has been growing exponentially and is considered one of the most expensive commodities in the
world. With this digitization of data comes several problems like data security, data storage, access control/ ownership
of data, among others.

Though there are many ways to keep the data secure, there have always been loopholes or points of vulnerability
which can be used to gain unauthorized access to data. The proposed framework can help avoid these loopholes and
make data more secure while sharing or when stored in a database. The proposed framework uses the concept of
re-encryption to achieve this, elaborated in the subsequent sections of the paper.

About Mindtree
Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility
to achieve competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its
deep domain knowledge to 300+ enterprise client engagements to break down silos, make sense of digital complexity and
bring new initiatives to market faster. We enable IT to move at the speed of business, leveraging emerging technologies and the
efficiencies of Continuous Delivery to spur business innovation. Operating in 18 countries and over 40 offices across the world,
we’re consistently regarded as one of the best places to work, embodied every day by our winning culture made up of over
21,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

www.mindtree.com ©Mindtree 2020

 Another aspect of this is that the policy data can be
 updated only by the person uploading it. In the
 process explained above, there is a vulnerable point,
 i.e. the access policy stored in the database can be
 susceptible to tampering in case of a data breach.

Santanu Mukherjee
Blockchain CoE Lead, CAG,
Mindtree Ltd.
Bengaluru, India
santanu.mukherjee@mindtree.com

Vishal Chaurasia
Blockchain CoE,
Mindtree Ltd.
Bengaluru, India
vishal.chaurasia2@mindtree.com

The activity diagram of the above explained flow is as
follows:

Some points need to be noted here as follows:

 The re-encryption scheme is unidirectional. This key
 enables the transformation of encrypted data or
 ciphertext only in one direction, i.e., from Alice to Bob in
 this case [1].

 The re-encryption key generated here can be re-encrypt
 any data which is encrypted using Alice's public-key.

 The process of re-encryption can be multi-hop, i.e., the
 re-encrypted data can be re-encrypted again [1].

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and the receiver's private key
 is still required to decrypt the data.

With the help of the above flow, one can see that this
process automatically eliminates one of the significant
vulnerability points i.e. exchanging of keys between the
parties. At the same time, it also presents a vulnerability
that as stated above - the re-encryption key generated
here can re-encrypt any data which is encrypted using
Alice's public-key. It's not a good idea to share the
re-encryption key with Bob as that will enable him to
access that data also which he was not provided access
by Alice.

Hence, to overcome the vulnerability cited above, there
should be a system which acts as a mediator, enforcing
access control policies specified by the user without
actually knowing the actual data and without sharing the
re-encryption keys with any of the recipients.

IV. THE RE-ENCRYPTION FRAMEWORK
As mentioned in the previous section, this framework
proposes a system which acts as a mediator that enforces
the access control policies as provided by the user in
addition to the normal re-encryption process explained
before. This mediator system could merely be a server
exposing some API for this operation or a smart contract
deployed on a blockchain platform enforcing the access
policies as specified by the user.

This process can be further understood with the help of
the following flow:

Some of the advantages of the proposed framework are
as follows:

 The data uploaded in the database is in encrypted form,
 so even if there is a breach in the database, the actual
 data would not be exposed.

 In the same scenario, even if someone gets hold of the
 re-encryption key, it wouldn't be of any use as it would
 only re-encrypt the data and will still require the
 receiver’s private key to decrypt the data.

 As mentioned before, there isn't any actual exchange of
 private keys happening.

 This whole process is pluggable and can be implemented
 on top of any system requiring exchanging of data
 between the parties.

 The concept of policy enforcing and storing can also be
 implemented using Blockchain Smart Contract, thus
 increasing the availability and security of the system.

 Using this framework gives a user absolute ownership
 of the data. Though the data is stored in a database
 collectively, all of it is encrypted, so unless a user
 provides access to data by themselves, no one can
 access it.

V. POSSIBLE APPLICATIONS
As mentioned earlier, this framework can be applied
anywhere there is a requirement of data exchange
between two different parties. Some of the possible
scenarios of its application are as follows:

 In case of sharing medical documents, every time a
 person goes to a hospital or clinic for consultancy or
 treatment, he/she needs to share the past medical
 records and document with the doctor to proceed.
 This framework can be used here, where the user can
 choose what, and to whom to share the medical
 documents.

 In case of Digital Identity, in the present scenario,
 there is always a need to prove one's identity to
 initiate a process such a visa application, purchasing a
 new internet connection or anything else. This
 framework can be used by the users to share their
 identity document with the vendor/organization when
 required. Users can also have the ability to revoke
 access in case the user changes his/her mind, or the
 process is complete.

There are many other use cases as well, but the essence of
all of them remain the same i.e., ‘Sharing of Data.’ This
framework can also be used to keep track of data access by
someone else which can prove to be a handy feature for
auditing purposes, as well as to avoid the misuse of data.

VI. FURTHER IMPROVEMENTS
Though the framework solves many security issues which
one may encounter while sharing data currently, there are
some points which can further be improved:

Fig. 1. Re-encryption Process

1. Alice encrypts the data using her public key and
 uploads it on a database.

2. Bob sends a file request to Alice.

3. On accepting this request, Alice generates a
 re-encryption key and sends it to Bob.

4. Bob can get the encrypted data from the database
 and re-encrypts it using the re-encryption key

provided by Alice and decrypt it using his private key.

 A significant issue is key management. From an
 end-user point of view, one can understand that the
 cryptographic keys involved are long and almost
 impossible for a user to memorize. There needs to be
 a way to manage these cryptographic keys (public key
 and private key); it can be through a hardware wallet
 or any other method which ensures that the keys
 remain safe, enabling the user to use them with
 simplicity.

References
[1] DAVID NU~NEZ, “UMBRAL: A THRESHOLD PROXY RE-ENCRYPTION SCHEME”

Fig. 2. Proxy Re-Encryption Flow

