
MICROSERVICES
ARCHITECTURE FOR
MODERN DIGITAL PLATFORMS
A white paper by Dr. Shailesh Kumar Shivakumar,
Mindtree Limited

Microservices Architecture is becoming the mainstream services-based integration model and the de-facto standard for
services development for enterprise applications. As enterprise applications tend to become complex, demanding
on-the-fly scalability and high responsiveness, microservices play a crucial role in fulfilling these criteria. Enterprises can
realize a strategic vision of an API-based, loosely-coupled, scalable and flexible platform architecture with containerized
microservices.

In this white paper, we discuss the salient points of microservices-based solution architecture and shed light on the
architecture patterns, real-world use cases and microservices best practices.

AN INTRODUCTION TO MICROSERVICES

Microservices are modular, autonomous and logical units of functionality that are independently deployable and scalable.
Its architecture involves decomposing the complex business functionality into modular and granular microservices that
can be quickly and continuously developed, deployed and maintained. Microservices architecture offer lightweight and
stateless services architecture that comes handy in modern digital architecture.

DRIVERS AND THE MOTIVATION FOR MICROSERVICES ARCHITECTURE

When enterprises embark on a digital transformation journey, the enterprise architecture team aims to design a flexible
and extensible architecture. Given below are the key drivers for microservice architecture:

• Decouple systems of engagement (SoE) with systems of record (SOR) through well-defined API contracts. This provides
 the flexibility to change the tools and technologies without impacting the experience and business functionality
• Build large and complex systems with high fault tolerance that provides on-demand scalability and high availability
• Adopt a lean model to build the presentation and integration layer, so that responsive and high performing experiences
 can be built
• Use platform principles to develop modular components for high extensibility
• The platform should provide on-demand scalability and high availability.
• Adopt DevOps principles for continuous integration, continuous delivery with faster release time

The complex application can be built as a suite of
indendently deployable microservices. Modern digital
applications employ lightweight models at all tiers to
enable high performance and scalability:

• User Interface: The user interface layer is built using
 JavaScript framework such as ReactJS or Angular to
 provide responsive and lightweight user interface.
• Integration: The integration is mainly done with
 REST invocations with JSON being the payload structure.
 This again provides lightweight integration method.
• Business services: Business services are implemented
 as microservices (for ground-up development) or as
 microservice wrapper (for legacy applications).
• Security: Lightweight token-based security is used for
 authentication and authorization.

• Adopt a lean model to build the presentation and integration layer, so that responsive and high performing experiences
 can be built
• Use platform principles to develop modular components for high extensibility

The platform should provide on-demand scalability and high availability.
Adopt DevOps principles for continuous integration, continuous delivery with faster release time

 Use platform principles to develop modular components for high extensibility
• The platform should provide on-demand scalability and high availability.
• Adopt DevOps principles for continuous integration, continuous delivery with faster release time

Decouple systems of engagement (SoE) with systems of record (SOR) through well-defined API contracts. This provides
 the flexibility to change the tools and technologies without impacting the experience and business functionality

Build large and complex systems with high fault tolerance that provides on-demand scalability and high availability
Adopt a lean model to build the presentation and integration layer, so that responsive and high performing experiences

Use platform principles to develop modular components for high extensibility
The platform should provide on-demand scalability and high availability.
Adopt DevOps principles for continuous integration, continuous delivery with faster release time
The platform should provide on-demand scalability and high availability.
Adopt DevOps principles for continuous integration, continuous delivery with faster release timeAdopt DevOps principles for continuous integration, continuous delivery with faster release time

Build large and complex systems with high fault tolerance that provides on-demand scalability and high availability
Adopt a lean model to build the presentation and integration layer, so that responsive and high performing experiences

Use platform principles to develop modular components for high extensibility
The platform should provide on-demand scalability and high availability.
Adopt DevOps principles for continuous integration, continuous delivery with faster release timeAdopt DevOps principles for continuous integration, continuous delivery with faster release time

Martin Fowler and James Lewis define
microservices as “Microservice
architectural style is an approach to
developing a single application as a
suite of small services, each running

in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services
are built around business capabilities and are inde-
pendently deployable by fully automated deployment
machinery. There is a bare minimum of centralized
management of these services, which may be written in
different programming languages and use different data
storage technologies.”

KEY TENETS OF MICROSERVICES

• Modularity: Each microservice represents a logically cohesive, lightweight and independent business functionality
 with well-defined boundaries. By design, microservices are highly granular, and independently built and deployed.
• Single functionality principle: Each microservice encapsulates a single business functionality or use case.
• Stateless: Microservices provide stateless communication between the client and the server.
• Independent deployment and independent scalability: Each microservice can be independently deployable, and
 hence, they are independently scaled to respond to varying workloads and user demands.
• Self-containment: The microservice deployment unit is self-contained as it includes all dependent libraries, storage
 units, databases and such. Microservices uses decentralized data management wherein service-specific database is
 part of microservice deployment unit/container.
• Resiliency: Microservices architecture eliminates single point of failure through distribution of coherent functionality
 to various microservices. Even if a single service goes down, the application will continue to work. By leveraging the
 circuit breaker pattern, the fault tolerance can also be enhanced.
• Loose coupling: Microservices are designed to be loosely coupled with minimal dependency on other services and
 libraries.
• Smart Endpoint and dumb pipes: Microservices communicate with each other with well-defined APIs (smart endpoints)
 over simple protocols such as REST over HTTP (dumb pipes).

TWELVE-FACTOR APPS AND MICROSERVICES

Modern architecture aims to develop large and complex applications in software as service (SaaS) models. The twelve-fac-
tor methodology provides guidelines for developing SaaS-based applications. Microservices, containers and their ecosys-
tem fit well into the twelve-factor methodology. We have given various solution components in the microservices architec-
ture ecosystem that can be leveraged for building twelve-factor apps in table 1.

TABLE 1 SOLUTION COMPONENTS FOR 12 FACTOR APPS

Codebase One codebase tracked
in revision control,
many deploys

Source control systems such as gitlab or bitbucket can be
leveraged for this. Source control systems provide in-built
support for code revisions and version controls. Deployment
can be done through build pipeline and CI/CD pipeline.

Dependencies Explicitly declare and
isolate dependencies

Build and packaging libraries such as Maven, Gradle and npm
allow us to declare the dependent libraries along with the
library version.

Config Store config in the
environment

Environment specific configurations (such as URLs, connection
strings etc.) can be injected to the configuration files (such as
application.properties in Spring application) in the build pipeline.

Backing services Treat backing services
as attached resources

Backing services such as storage, database or an external
service should be accessible and managed through configuration
files to ensure portability.

Build, release, run Strictly separate build
and run stages

Source code branches and automated CI/CD pipelines can be
leveraged to manage environment specific releases.

Processes Execute the app as
one or more stateless
processes

Stateless is the core tenets of microservices.
Implementing token-based security helps us implement
stateless authentication and authorization.

FACTORS BRIEF DETAILS
(Ref: https://www.12factor.net/)

MICROSERVICE ECOSYSTEM COMPONENT

TABLE 1 SOLUTION COMPONENTS FOR 12 FACTOR APPS

Port binding Export services via port
binding

The services can be made visible through exposed ports.
Container infrastructure provides configuration files
(such as service.yaml in Docker) to bind the ports for services.

Concurrency Scale out via the
process model

By leveraging independent deployment feature of
microservices, we can individually scale the most needed
microservice by using on-demand scaling feature of containers.

Disposability Maximize robustness
with fast startup and
graceful shutdown

Individual containers/pods can be started quickly. Container
orchestrator can handle container shutdown gracefully.

Dev/prod parity Keep development,
staging, and production
as similar as possible

We can achieve parity in environment dependencies,
server dependencies, configurations through a container model.

Logs Treat logs as event
streams

Each microservice can log to standard output, which can be
picked up by tools such as Kibana or Splunk to manage and
visualize the logs centrally.

Admin processes Run admin/management
tasks as one-off processes

Container orchestration is managed by tools such as
Kubernetes, while log management is carried out by tools
such as Kibana or Splunk. Other application-specific
administration can be deployed as a separate microservice.

FACTORS BRIEF DETAILS
(Ref: https://www.12factor.net/)

MICROSERVICE ECOSYSTEM COMPONENT

ADVANTAGES OF MICROSERVICES

Microservice architecture is a preferred option for modern digital architecture as it is possible to design and develop
extensible solutions. The key advantages of microservices have been provided below:

• Agile delivery: Decomposing the services into logically modular, independent microservices helps in Agile delivery,
 easily fits in the DevOps model (continuous integration, continuous deployment and continuous delivery) and faster
 time to market. If the application needs high deployment velocity agile delivery is the preferred option
• Diversified technologies and distributed teams: Development models support distributed teams developing the
 microservices in various languages. Each service can be built using the most appropriate language, tool and
 technology.
• Asynchronous invocation: Microservices are stateless by default, helping us to asynchronously invoke them to deliver
 high performance and high scalability.
• Headless integration model: The systems of record (SOR) such as CMS, DAM workflow and such can be integrated in
 headless mode through microservices so that the system of engagement will be completely decoupled from the
 system of record.
• Token-based security: We could implement lightweight token-based security with microservices to implement
 authentication and fine-grained authorization for stateless microservices.
• Lightweight services: The microservices provide a lightweight services model that can leverage JSON data contract.
• Extensibility: Microservices can be leveraged to create an extensible solution by quickly onboarding newer ones.
• Independent scalability: As each microservice can be independently deployed along with all the dependencies, they
 can also be independently scaled based on the load.
• Multi-speed IT model: We can build microservices layer on top of traditional SOA-based webservices in legacy
 platforms to implement a multi-speed IT model.

• Decoupling and loose coupling: Systems of engagement (SOE) and SOR will be fully decoupled so that we have
 flexibility to change the backend systems.
• Cloud readiness: The microservices design can be easily integrated with Cloud environments on Cloud native
 containers or over Cloud-based virtual machines.
• Open standards: Microservices can be built using open standards such as REST, JSON, OAuth and others.
• High performance and high availability: Containerized microservices can be leveraged for high performance and
 availability. The asynchronous nature of microservices invocation also improves the performance.
• Enabler for large and complex applications: Microservices architecture can be leveraged for developing large and
 complex applications that need multiple technologies and distributed teams with independent scalability.
• Resiliency and fault tolerance: Container eco-system offers features such as clustering, load balancing, circuit breaking
 and others to offer high resiliency and fault tolerance for the microservices. The design provides graceful degradation
 of functionality.
• Independent development and deployment: Each microservice can be independently developed and deployed by
 different teams. This helps us to incrementally add features and functionalities.
• Responsive to changes: We can easily change the existing features and extend the functionality with microservices
 architecture.

MICROSERVICES ARCHITECTURE
In this section, we have elaborated on the solution architecture for microservices.

MICROSERVICES REFERENCE ARCHITECTURE
The microservices reference architecture identifies the main layers and solution components involved in the solution.
We have depicted Microservices reference architecture with key components in Figure 1.

1
USER EXPERIENCE LAYER

CLOUD ECO-SYSTEM

Web Application
(ReactJS/Angular)

Third Party
Applications

Mobile Apps Kiosks IoT Devices

ROUTING, LOAD BALANCING & CACHING

API Gateway

Service Discovery Load Balancer Caching Circuit Breaker

2

DEVOPS5

Automated
Testing

Release
Management

Automated
Deployments

Deployment
Pipelines

Source Control
Management ProvisioningContinuous

Build

MONITORING & NOTIFICATION6
SLA/Threshold
Configuration

Health check
Monitoring

Automated Alerts
& Notification

Availability
Reports

SLA
Monitoring

Monitoring
Dashboard

4

CONTAINER ECOSYSTEM

Core Container Services

Container
Security

Container
Orchestration

Image
Repository

Container
Configuration

Load
Balancing

Container Cluster
Management

Auto-scalable Containers

Microservice Service DB Microservice Service DB Microservice Service DB Microservice Service DB

SECURITY

Authenti-
cation

Single
Sign on

Authori-
zation

3

Identity
Store

Figure 1: Microservices Reference Architecture

USER EXPERIENCE LAYER

The user experience layer consists of consumers such as mobile apps, web applications, IoT devices, third party services,
kiosks and others. The consumers of microservices invoke stateless microservices with parameters.

ROUTING, LOAD BALANCING AND CACHING

This layer mainly has components to route requests to specific consumers, load balance them and cache the response. The
details of these components have bveen provided below:

• API Gateway: Gateway/ proxy for the client to access microservices. All cross-cutting functionalities like security,
 loaded balancing, governance, protocol transformation, analytics, performance management, payload transformation
 etc. are implemented here.
• Service discovery: It works as a directory service for all microservices in a domain. API gateway consults with the
 service directory to route all client requests. Theinter service communication also leverages service directory.
• Load balancer: The load balancer is responsible for routing the requests to the microservice instance.
• Caching: Static data (such as images, text files etc.) and service response will be cached for optimal performance.
 Systems such as AWS CloudFront provide edge-side caching and systems such as Redis provide in-memory caching.
• Circuit breaker: This component is used to detect service failure and provide fallback.

CONTAINER ECOSYSTEM

Container images are the preferred deployment units of microservices. The container eco-system mainly provides a
container orchestrator (such as Kubernetes) which manages the lifecycle of containers. Below are the core services
provided by the container eco-system:

• Container security: Ensures the security of container images, container access management, container security testing,
 infrastructure security, container pipeline security and others.
• Container orchestration: The container orchestrator is responsible for managing the lifecycle of containers, monitoring
 the container’s health, configuring the service ports and others.
• Container cluster management: The cluster management module is responsible for managing various container
 clusters such as blue/ green clusters.
• Image repository: Users can reuse and publish the images on the image repository.
• Container configuration: We can specify container configuration elements such as public IP, deployment strategy,
 namespace, inter-container dependency, custom configuration values, storage volumes, container labels etc.
• Load balancing: Based on the container’s availability, traffic volume and health status, the load balancer evenly
 distributes the load to various containers.

SECURITY

The cloud infrastructure provides various security related managed services such as user directory service, authentication
service, authorization service, SSO service and others. In the OAuth 2.0 model, we will have time-based tokens for secured
resource access.

DEVOPS

The DevOps module includes components for release management, automated deployments, continuous build, deploy-
ment pipeline, source control management and provisioning.

These microservices are supported by cross-cutting infrastructure services e.g. Authorization, Discovery, Proxy,
Configuration etc.

MONITORING AND NOTIFICATION

The monitoring and notification infrastructure includes components for configuring SLA thresholds (CPU, memory,
response times etc.), health check monitoring (monitoring system and service availability, performance), threshold-based
alerting and notification, monitoring dashboard, availability reports and others.

A sample microsevice interaction is given in Figure 2.

Figure 2: Sample Microservice Interaction Diagram

CLOUD NATIVE MICROSERVICE FRAMEWORK – SOLUTION COMPONENTS

Auth Server

Token Request

Token Request

Customer
Service

JWT Token
Repo

NFS

Shopping Cart
Service

Configuration
Service

Proxy Server

Discovery
Service

Item Catalog
Service

Http/s Rest Call

Register

Configuration Data

Configuration Data

Configuration
 Data

Register

Register

Http/s Rest Call

Http/s Rest Call

Discover

TABLE 2 SERVICE DETAILS

Auth Server Custom Authorization server implementation which provides a configurable (in-memory, JWT)
identity token. The token will be used to verify a user’s authenticity every time the client tries
to access the above business service

Proxy Sever We can leverage the Netflix OSS- Zuul service.

Configuration
Service

Custom cloud configuration service implementation. It provides configurable in-file or
Git storage for service configuration.

Service Discovery We can leverage the Netflix OSS- Eureka service

INFRA SERVICE DETAILS

We have given the sample solution components and product stack in table 3.

CLOUD DEPLOYMENT ARCHITECTURE

Microservices can be easily deployed in popular Cloud platforms. We have discussed the deployment details of microser-
vices on two popular Cloud platforms.

AMAZON WEB SERVICES

We have depicted sample AWS deployment architecture for microservices in Figure 3. The main solution components are
as follows:

• Cloudfront CDN: Cloudfront native CDN allows to effectively deliver the content for the consumer from different
 geographies.
• S3 Bucket: ReactJS/Angular-based web applications will be deployed on S3 bucket & it is integrated with AWS Cloud
 front. The frontend is secured with WAF (Web Application Firewall). Deploying frontend static content on S3 makes it
 highly scalable & cost effective.
• Custom Services Layer: Backend microservices are developed using NodeJS/ Spring Boot and are deployed on
 containers using AWS Cloud-native container orchestration services ECS. These services are accessed through
 AWS API Gateway.

TABLE 3 SAMPLE MICROSERVICES PRODUCT STACK

Api Gateway Netflix OSS- Zuul

Authentication Service Spring – Security Oauth2, OpenID Connect

Service Discovery Netflix OSS- Eureka, Apache Zookeeper

Configuration Service Spring – Cloud Config Server

Microservice Spring – Boot, Vert.x, Dropwizard

Monitoring Netflix OSS- Turbine, Prometheus, Splunk, ELK (Elasticsearch, Logstash,
Kibana), CAdvisor

Visualization – Grafana, Kibana

Circuit Breaker Netflix OSS- Hystrix

Microservices Testing Wiremock

Container Ecosystem Docker – Container technology
Docker Swarm, Kubernetes – Container orchesrator

ARCHITECTURE COMPONENT SAMPLE PRODUCT STACK

Figure 3: Sample AWS-based Microservices Deployment Architecture

AWS-BASED MICROSERVICES DEPLOYMENT ARCHITECTURE

Users

External Services

Amazon
Route 53

Rest Call

Direct connect gateway

Amazon
CloudFront –

Primary region

Amazon API Gateway
with WAF support

AWS IAM AWS
IAM

Application
Load

Balancer

S3 – for static
content

Enterprise
A

pplications

Amazon
CloudWatch

Direct Connect
Gateway

Amazon API
Gateway with
WAF support

Application
 Load

Balancer

S3 – for static
content

Amazon
CloudWatch

Amazon
ECR

Containerized
Microservices

Inter region
peering

Amazon ECR

Containerized
Microservices

Amazon CloudFront -
secondary region

• API Gateway: API integration with the internal system via API gateway through direct connect internal network.

Given below are the key architectural considerations:

• Cloud-native PaaS solutions like API Gateway, Cloudfront, and S3 to achieve the low cost of cloud operations and
 scalability
• Containerized backend services on Docker containers orchestrated through Cloud-native ECS which helps meet the
 required availability and scale at need basis
• Integration with internal applications through high speed secured direct connect connection to on-premise data center
 or Cloud.

MICROSOFT AZURE

We have depicted sample Azure deployment architecture for microservices in Figure 4. The main solution components are
as follows.

Figure 4: Sample Azure-based Microservices Deployment Architecture

AZURE-BASED MICROSERVICES DEPLOYMENT ARCHITECTURE

Client Application

Azure Region

External Services

Microsoft
Azure

Microservices

Web portal

Enterprise A
pplications

Azure Monitor

AKS Cluster
 Resource Group

Azure Key Vault Application Insights

Azure
CDN

API Gateway

API Gateway
Express Route/
Site-Site VPN

WAF

Application
Gateway

L7 LB

• Azure CDN: Azure CDN allows the effective delivery of content for the consumer from different geographies. This helps
 the content faster and closer to consumer regions.
• Web-App Services: ReactJS/ Angular frontend will be deployed on Azure Web App services, front ended by the
 application gateway with WAF security layer.
• API – App Services: Custom backend microservices are deployed on API app services. App services are fully managed
 Azure-native PaaS offerings.
• Integration: Third party services are consumed through API Gateway. On-premise application are integrated to Cloud
 through express route, while the communication goes through the API gateway.

The primary considerations are given below:

• Highly scalable infrastructure – Being a purely PaaS offering from Azure, it can scale on a need basis.
• Highly performant – CDN helps deliver the content closer to consumers across the geographies.
• Reduced maintenance cost – Cloud-native solutions like App Services, API Gateway do not require any maintenance.
• IaaC – Infrastructure as a Code template to consistently create the right environment.

MICROSERVICES PATTERNS

By leveraging microservices patterns, we can solve some of the common problems and apply the best practices. In this
section, we discuss the main patterns used in Microservices architecture.

DECOMPOSITION PATTERNS

Microservices are loosely coupled with a high functionality coherence. Optimum granularity of microservices is required
for high performance and high scalability. We can decompose the services in following ways:

• Decomposition based on business capability: Create microservices based on business capabilities. For instance, in an
 e-commerce solution, the main business capabilities are order management, product promotions, service management
 and others. We can create microservices based on these.
• Decomposition based on sub-domain: We can identify the sub-domains of the core domain (business) and create
 microservices based on that. For instance, the order management domain has sub-domains such as product catalog,
 inventory management and others.
• Decomposition based on transaction: Identify the main transactions of the application and develop microservices for
 them. For instance, the main transactions of an e-commerce application are login, checkout, search and such; We can
 create microservices for these transactions.
• Decomposition based on resources: We can create microservices based on nouns or resources and define the
 operations. For instance, in an e-commerce solution, ‘products’ is a resource and we can define the list all products
 (GET /products), query particular product (GET /product/{1}), insert product (PUT /product/{}).

INTEGRATION PATTERNS

As microservices are mainly used for integration, let’s look at optimal ways to invoke multiple microservices, microservice
invocation sequence, data and resource security, data transformation and responses for different clients and others.

• API gateway pattern: An API gateway provides a centralized access point for invoking a microservice. The API gateway
 handles security (such as authentication, authorization), governance (such as logging service, monitoring service),
 request routing, protocol transformation, data transformation and the aggregation of responses from multiple services.
• Aggregation pattern: When a single microservice needs responses from multiple microservices, a composite service
 can take the responsibility of aggregating the response.
• UI composition pattern: The end user interface layer is laid out into various sections, which individually invokes the
 corresponding microservice asynchronously. Modern user interfaces use single page application (SPA) built by Angular
 or ReactJS frameworks.
• Backend for frontend: Instead of creating a general-purpose microservice, we can design a microservice and its
 response specifically for the client agents (such as desktop browsers, mobile devices etc.). This tight coupling of client
 agents with the corresponding backend service helps us to efficiently create response data.

DATA-RELATED PATTERNS

As microservices are self-contained and designed for independent scalability, we end up having service-specific databases
(such as database server per service, database schema per service and service-specific tables). Due to this design, we face
challenges such as:

• A single service that reads or updates data from multiple databases
• A single business transaction spanning multiple services and databases
• Replication of data in the databases

The common patterns used for data scenarios have been listed below:

• Shared database: Though not a recommended approach, when we are decomposing a monolith application to
 microservices, the approach can comprise a single being shared by multiple microservices. Once the transformation is
 complete, each service should gets its own database.
• Command Query Responsibility Segregation (CQRS): Database handling is split into two categories, the command part
 for handling data creation, update, deletion and the query part that uses materialized views to retrieve data. The
 materialized view is updated by subscribing to data change events. Event sourcing pattern is used along with CQRS to
 create immutable events.
• Saga pattern: When a business transaction needs to manage data consistency that is spread across multiple databases,
 we could use Saga pattern. As a part of the Saga pattern, each transaction is orchestrated locally or centrally to execute
 it entirely and handle the failure/rollback scenario. For instance, if a business transaction needs to handle data related
 to order and customer service, each of these services produces and listens to each other to handle the transaction.

OBSERVABILITY PATTERN

In this section, we list patterns that help in real-time data aggregation and notification.

• Log aggregation: Since microservices are deployed into individual containers, the logs generated by each of the
 containers (a.k.a pods) need to be aggregated to create a centralized log repository. Microservices can log to standard
 output or to a log file. The log management systems such as Splunk or Kibana can aggregate the log stream in real time
 to a centralized log repository and we can query the real-time logs.
• Performance monitoring: Performance monitoring services such as Prometheus, AppDynamics and NewRelic can be
 used to monitor the performance metrics of microservices. The performance metrics are depicted visually and we can
 configure the performance thresholds and notification triggers.
• Distributed tracing: When the request flows across various layers and microservices, it is necessary to trace the request
 end-to-end for error handling and for performance troubleshooting scenarios. In distributed tracking, we create a
 unique request ID (such as x-request-id) that is passed across all layers and microservices and logged for troubleshoot
 ing purposes.
• Health check pattern: In order to properly distribute the load and route the traffic accordingly, each microservice has to
 publish health check endpoint (such as /health) that provides the status of the overall health of the service. The health
 check service should check the status of dependent systems (such as databases, storage systems) and host
 connectivity to provide the overall health status of the service.

CROSS-CUTTING CONCERN PATTERNS

In the microservices eco-system, we need to handle many common, cross-cutting concerns such as security, configuration
management, deployment and others. The patterns related to these concerns have been discussed in this section:

• External configuration: All environment-specific configurations such as connection strings, application properties and
 URLs should be loaded from an external configuration file. The CI/CD pipeline can inject the environment-specific
 configuration values during the build.
• Service discovery: A centralized service discovery module should handle the responsibilities such as service registra
 tion/ de-registration and request routing, based on service health. For client side service discovery service registry is
 used for load balancing and for server side service discovery, server side load balancing is used.
• Circuit breaker: When one of the services in the request-processing pipeline fails, the circuit breaker is responsible in
 terms of handling the failure and preventing the cascading of the error. The circuit breaker can monitor the error from a
 dependent service and fallback to a default handler in case of error. Netflix Hysterix is an example of a circuit breaker.

• Blue green deployment pattern: In order to seamlessly deploy the newer version of microservices with minimal
 downtime, we can maintain two identical production instances (blue instance and green instance), one of which will be
 live, serving the requests at any time. During production deployment, we can update the non-live instance and route
 traffic to it.
• Access Token: Due to the stateless nature of microservices, each request should securely pass the user identity. Access
 tokens such as JSON Web Token (JWT) encapsulates the claim details in microservices architecture.
• Auditing: Log the user actions such as authentication, password changes in logs that are centralized, immutable, and
 secure for auditing purposes.
• Exception Logging: Logs all service exceptions in a central location and provides notification feature.
• Microservice chassis: Reuse an existing microservices framework such as Spring Boot to leverage in-built features such
 as configuration handling, logging, request filtering etc.

MICROSERVICES USE CASES

Microservices can be used for various enterprise solution scenarios. The common use cases for microservices have been
discussed in this section:

Mobile App Services
• Context: Android and iOS mobile apps use services to get the information and transaction data needed for a healthcare
 app. Security features like registration, login and authorization are implemented through services. Mobile apps were
 also integrated with third party services such as voice search, analytics and others.
• Microservice Solution Architecture: Microservices architecture was used to develop the light weight services layer:
 • Integration middleware is used for centralized management of service invocation.
 • Post successful authentication, the security microservice creates a JWT token encapsulating the logged-in user’s
 information.
 • Microservices are designed based on mobile app screens. Most mobile app screens invoked one microservice to get
 the response. The dashboard screen invoked 3 microservices.

Single Page Application (SPA) for B2C Application
• Context: A B2C SPA web application was developed using Angular framework. The web application provided many
 features such as product configuration, admin module, dashboard etc.
• Microservice Solution Architecture: Microservices architecture was implemented as part of services layer:
 • API Gateway was used for governance and orchestration of microservices.
 • X-request-id was used to trace the transaction end to end.
 • Microservices were built with Docker images and deployed as Kubernetes pods. The pods were configured for
 auto-scaling based on the metrics (CPU and memory utilization)
 • Security service creates a valid JWT token after successful authentication.
 • Microservices logged to standard output and Kibana was used for log aggregation.
 • Cloud services were used for real time performance monitoring
 • Health check end point was implemented for all microservices that depicted the overall health of the service.
 • External configuration management was done using application.properties of Spring Boot framework. The build
 pipeline injected the environment specific values (such as base URL, environment value, DB connection string) to
 the application.properties during the build.

Multi-speed IT for legacy applications
• Context: A financial application platform was developed on legacy portal platform. The application users faced multiple
 challenges such as performance issues, scalability and the time out of many services. Heavy weight SOAP-based legacy
 web services contributed to the overall performance. The user experience was not responsive or contemporary.

• Microservice Solution Architecture: Microservices architecture was used to develop the light weight services layer:
 • Microservices architecture was leveraged to develop a multi-speed IT model. Legacy web-services were
 decommissioned in a phased manner. In the first release, microservices were developed on top of legacy web
 services.
 • Redis caching layer was used to cache the costly resource calls. Event sourcing pattern was used to flush the stale
 cache entries when data is updated.
 • AppDynamic monitoring software was used for real time application and service monitoring.

Microservices best practices
Given below are the key best practices in microservices architecture:
• Naming Conventions: The microservices’ URL is usually a noun that represents a resource. We will use the schema to
 perform the appropriate actions. For instance
 • GET api/v1/accounts will list all accounts
 • PUT api/v1/account/1234 adds/updates the account id 1234
 • DELETE api/v1/account/1234 deletes the account id 1234
• Versioning: The microservice releases are managed through versions, which are a part of the microservices endpoint.
• Logging: Logging must be enabled to capture the errors using centralized dashboard tools such as Kibana, Splunk to
 monitor the logs and errors. We should design and log unique request ids that can help us to trace a user transaction
 end to end.
• Monitoring and alerting: Monitoring tools should be used to observe the performance and availability of the
 microservices. Additional monitoring services can be configured to monitor the disk space, CPU utilization and others.
 Appropriate thresholds should be configured to alert the operations teams in case of SLA violation.
• DevOps setup: We need to setup the DevOps ecosystem to include the build and deployment pipeline.
• Design for failure: We need to implement features such as the following to handle failures:
 • Auto-scaling: Leverage the auto-scaling feature of container ecosystem to automatically scale based on the
 user load.
 • Circuit Breaker: Design the circuit breaker pattern to handle the service exception and fallback to default service
 response.
• Design philosophy: The granularity of microservices should be based on following design principles:
 • Business functionality: Each microservice should be designed to depict one business functionality.
 • Independence: Each microservice should be independently upgradeable without impacting the service consumers.
 The database, storage systems should be managed by microservices.
 • Coupling and Cohesion: Coupling between microservices should be avoided and each microservice should have
 high functionality cohesion.
• Governance: We should define define standards for development, deployment and functionality/performance
 validation.
• Distributed Design: As the system is composed of multiple microservices, we need to have optimal service
 decomposition, clean interfaces for services and appropriate database for each service.
• Automation: To reduce the operational complexity of microservices architecture, we need to automate operational
 tasks such as build, deployment, error reporting, alerting, monitoring, auto-scaling and others.

About Mindtree
Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility to achieve
competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its deep domain knowledge to 350+
enterprise client engagements to break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to
move at the speed of business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation.
Operating in more than 15 countries across the world, we’re consistently regarded as one of the best places to work, embodied every day by our
winning culture made up of 21,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

©Mindtree 2019www.mindtree.com

About Mindtree
Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility to achieve
competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its deep domain knowledge to 350+
enterprise client engagements to break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to
move at the speed of business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation.
Operating in more than 15 countries across the world, we’re consistently regarded as one of the best places to work, embodied every day by our
winning culture made up of 21,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

©Mindtree 2019www.mindtree.com

About Mindtree
Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping enterprises marry scale with agility to achieve
competitive advantage. “Born digital,” in 1999 and now a Larsen & Toubro Group Company, Mindtree applies its deep domain knowledge to 350+
enterprise client engagements to break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to
move at the speed of business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation.
Operating in more than 15 countries across the world, we’re consistently regarded as one of the best places to work, embodied every day by our
winning culture made up of 21,000 entrepreneurial, collaborative and dedicated “Mindtree Minds.”

©Mindtree 2019www.mindtree.com

ABOUT THE AUTHOR

Dr. Shailesh Kumar Shivakumar has 17+ years of experience in a wide
spectrum of digital technologies including, enterprise portals, content
management systems, lean portals and microservices. Shailesh holds a
PhD degree in computer science and has authored eight technical books
published by the world’s top academic publishers such as Elsevier Science,
Taylor and Franscis, Wiley/IEEE Press and Apress. Shailesh has authored
more than 10 technical white papers, five blogs, 12 research papers,
eight textbook chapters and multiple articles.Shailesh holds two granted
US patents, apart from five patent applications. He has successfully led
severage large scale digital engagements for Fortune 500 clients. Shailesh
can be reached at Shaileshkumar.Shivakumarasetty@mindtree.com.

