
A PRACTICAL
APPROACH
TOWARDS
ADOPTION OF
CONTAINERS
IN ENTERPRISE
Containers - A new way of software packaging
(Code, libraries, runtime, system tools) in a
lightweight, standard, secure manner. Containers
are everywhere – Linux, Windows, Cloud, Data
Centre Containers have captured the imagination
of Enterprises. Latest trend reports, over 50% of
companies have done some form of investment in
container technologies. Container adoption have
moved from pilot projects to large scale
deployment. Enterprises are now using containers
to run critical workloads in production. This paper
touches upon few aspects on Container adoption
at Enterprise scale, based on personal experience
of delivering containerized environment for
multiple clients

Why enterprise are adopting containerization technologies
 Introduce agility in business and technology
 Kickstart the Cloud Journey with Technology modernization
 Transform monolithic applications into microservices based architecture
 Get maximum value of Continuous Integration & Continuous Deployment
 Simplify Application Life Cycle management

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

CaaS Features:
 Better manage application delivery
 Helps to build, ship, and run application anywhere
 Achieve consistency in Content and Infrastructure
 Agnostic to OS, Language, Infra stack
 Provide range of tools to manage / orchestrate complete life cycle of both Application and Infrastructures
 Live upgrade of running application without downtime
 Must support scaling of Application containers
 Support persistence of application state in a durable manner

Container-As-a-Service – CaaS is a means or solution to
achieve Containerization objectives:
CaaS is a service model that allows IT organizations to develop and deploy containerized applications. It is the
container platform that handles the containerized application lifecycle

What is container used for?
 Speedy deployments over multiple environment with consistency of code and configuration
 Promote concepts of Immutable Infrastructure
 Enhances the portability of application
 Infuse self-healing, and Auto scaling to introduce hands-off experience
 Reduce expenses by optimizing resources and operations
 Improves Uptime and reduces MTTR at the same time

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Who uses containers:

Building Blocks of Container Ecosystem at Enterprise:

DEVELOPERS
 Self Service with automated

provisioning
 Flexible technical stack and

application framework
 Build and run containers

consistently across multiple
environments (Dev, Test,
Perf)

 Rapidly iterate, deploy to
production faster

IT MANAGEMENT
 Run on any Infrastructure –

Private, Public, Hybrid
 Better capacity utilization

and control on infrastructure
spend

 Enable standardization of
process and patterns – Load
Balancing, Secret
management, deployment

BUSINESS
 Provides speed and Agility
 Time to market is reduced
 Lowering IT costs
 Reduction in Deployment

Failure

DEVOPS SECURITY

APPLICATIONS

CONTAINERS

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

What does Container Technology offer?
It manages the lifecycle of containerized applications
 Workload Isolation, Service Discovery, Load Balancing, Configuration management
 Management of multiple Nodes in a cluster
 Scheduling of resources according to workload requirement
 Scaling of applications to a desired number of replicas
 Keeping health check record, self-healing
 User management, Secret management, authorization using RBAC model

Key Components of Container platform:
 Cluster Management
 Container Registry
 Container Services
 Scheduling

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Typical CaaS workflow:

DEVELOPERS

BUILD SHIP RUN

IT OPERATIONS

Development Environments Deploy, Manage, ScaleSecure Content & Collaboration

Containers as a service
Application Services

Cluster Manager

Controller

Scheduler

Core Conatainer Services

Container Registry

Log Management

Health
&

Monitoring

Service
Discovery

Compute Storage Networking

Physical Infrastructure

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Orchestration Technology

Deployment

Container Type

Master Cluster Setup

Workloads

Orchestration Capabilities

RBAC

Application scalability
constraints

Load Balancing within
cluster

Open Source Kubernete

On-Premise, Private &
Public

Docker and ContainerD

Manual and Complex

Workload can run on any
Kubernete Cluster

Rich features,
Customizable

Works , Supported by
RBAC author

Deployment definition
supports both manual
and automatic

Exposed via services, can
be used to load balance
within

Amazon Service

Only on Amazon AWS
EKS Platform

Docker

Multiple Masters across
AZ, managed by AWS

AWS ECS Cluster Only,
Vendor Lock IN

Limited

AWS IAM

Manual Scaling

AWS ELB

Built On Open Source
Kubernete

Only on Amazon AWS
ECS platform

Docker and ContainerD

Comes with ECS Cluster

Workload can run on any
kubernete Cluster

Rich features,
Customizable

AWS IAM

Deployment definition
supports both manual
and automatic

Exposed via services, can
be used to load balance
within

Features Kubernetes AWS ECS AWS EKS

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Auto Scaling for
applications

Application Rolling
upgrade/rollback

Block Storage

Networking

Nodes per cluster

Logging

Monitoring

Multi Data Centres/AZs

SSH access to
Infrastructure

Hybrid Cloud Support

Supports by number of
pods as well as resource
metrics such as CPU,
memory utilization and
custom

Yes

Flexible

Flat network model via
overlay, Requires 2 CIDRs

5000

Mature, Flexible, ELK,
FluentD

cAdvisor, sysdig,
Prometheus/Grafanna

Kubernetes
Federation(v1.9)

YES

YES

Cloudwatch alarms,
Lambda Functions

yes

AWS EBS

AWS VPC

1000

AWS Cloudwatch,
CloudTrail

AWS Cloudwatch,
CloudTrail, Partner tools
Datadog, Sysdig

Multi AZ

YES

No

Supports by number of
pods as well as resource
metrics such as CPU,
memory utilization and
custom

yes

AWS EBS

AWS VPC

Mature, Flexible, ELK,
FluentD, Cloudwatch

cAdvisor, sysdig,
Prometheus/Grafanna

Multi AZ

YES

Features Kubernetes AWS ECS AWS EKS

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
 Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
 Subscribe to security for the OS and any software and install on the docker

 Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
 Remove Capabilities/access that are not required by your software
 Do not run containers as uid 0
 Create isolated user namespace limiting the maximum privileges of the containers over the host
 Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
 Do not run unverified software and / or from sources you don’t explicitly trust
 Deploy a container-centric trust server
 Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
 Do not use environment variables for secrets
 Do not embed any secrets in the container image
 Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
 Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
 Subscribe to security for the OS and any software and install on the docker

 Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
 Remove Capabilities/access that are not required by your software
 Do not run containers as uid 0
 Create isolated user namespace limiting the maximum privileges of the containers over the host
 Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
 Do not run unverified software and / or from sources you don’t explicitly trust
 Deploy a container-centric trust server
 Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
 Do not use environment variables for secrets
 Do not embed any secrets in the container image
 Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

IMAGE SECURITY
 Image Verification

 Image Auditing

 CI/CD Integration

 Registry Security

 License scanning

 Static content scanning

RUNTIME SECURITY
 Cluster Integration

 Service based security

 Intelligent Policies

 Behavioral Threat detection

 Threat Protection

NETWORK SECURITY
 Network Policies

 Container Segmentation

 Network Enforcement

 DDOS, DNS attack protection

 Web Application Firewall

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

ENGINE SECURITY
Unprivileged deamon Namespaces Resource quotas

CONTAINER PLATFORM SECURITY
Rbac Volume encryption Network encyrption Secret management

CONTAINERS + Microservices = Perfect Match for Enterprises
Microservices, Cloud Native applications are new generation application architecture. It decomposes the big
monolithic application into small, discrete functions which can build and evolve independently

 Each Microservice is self-contained, Single business capability

 Each service is a separate codebase

 Each service persists their own data or external state

 Do not share data with other microservice

 Lightweight communication mechanism, HTTP resource API

 Independently Deployable

 Services don’t need to share same technology stack, framework etc.

 Design for failure

 Decentralized Governance

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping Global 2000 corporations marry scale with
agility to achieve competitive advantage. “Born digital” in 1999, more than 340 enterprise clients rely on our deep domain knowledge to
break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation. Operating across 17
countries, we’re consistently regarded as one of the best places to work, embodied every day by our winning culture made up of 19,000
entrepreneurial, collaborative and dedicated “Mindtree Minds.” To learn more, visit www.mindtree.com or follow us @Mindtree_Ltd.

Containers are natural fit for Microservice implementation. The container environment isolates between
multiple services running on the same host, this avoids the risk of language, library, framework dependencies
used by one microservice colliding with that of another. Containerized microservices are “Portable” across
machines and providers, runs faster than VMs

Advantages of Microservice in containers:
1. Faster start time – Docker container starts in seconds, VM with complete OS takes minutes to load

2. Quicker Deployment – With Docker, we need to just download an image to run on any server

3. Easier management and scaling of containers

4. Better management of resources, more containers on a single server

5. Wider OS support – Docker for Debian, Mac, Windows etc.

Containers, Microservices, DevOps all combine very well to provide the Business and Technology Agility to
Enterprises at scale. There are multiple paths to adopt containers, Every enterprise will have its own container
adoption journey – Transforming Monolith to Microservices based architecture, Building Cloud Native apps,
Adopting Hybrid Clouds.

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
 Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
 Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
 Application Modelling and Definition
 Environment – Application runtime management
 Change Management
 Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
 Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
 Uniform K8S service configuration, RBAC policies
 Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
 Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
 Subscribe to security for the OS and any software and install on the docker

 Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
 Remove Capabilities/access that are not required by your software
 Do not run containers as uid 0
 Create isolated user namespace limiting the maximum privileges of the containers over the host
 Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
 Do not run unverified software and / or from sources you don’t explicitly trust
 Deploy a container-centric trust server
 Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
 Do not use environment variables for secrets
 Do not embed any secrets in the container image
 Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

