
A PRACTICAL
APPROACH
TOWARDS
ADOPTION OF
CONTAINERS
IN ENTERPRISE
Containers - A new way of software packaging
(Code, libraries, runtime, system tools) in a
lightweight, standard, secure manner. Containers
are everywhere – Linux, Windows, Cloud, Data
Centre Containers have captured the imagination
of Enterprises. Latest trend reports, over 50% of
companies have done some form of investment in
container technologies. Container adoption have
moved from pilot projects to large scale
deployment. Enterprises are now using containers
to run critical workloads in production. This paper
touches upon few aspects on Container adoption
at Enterprise scale, based on personal experience
of delivering containerized environment for
multiple clients

Why enterprise are adopting containerization technologies
 Introduce agility in business and technology
 Kickstart the Cloud Journey with Technology modernization
 Transform monolithic applications into microservices based architecture
 Get maximum value of Continuous Integration & Continuous Deployment
 Simplify Application Life Cycle management

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

CaaS Features:
 Better manage application delivery
 Helps to build, ship, and run application anywhere
 Achieve consistency in Content and Infrastructure
 Agnostic to OS, Language, Infra stack
 Provide range of tools to manage / orchestrate complete life cycle of both Application and Infrastructures
 Live upgrade of running application without downtime
 Must support scaling of Application containers
 Support persistence of application state in a durable manner

Container-As-a-Service – CaaS is a means or solution to
achieve Containerization objectives:
CaaS is a service model that allows IT organizations to develop and deploy containerized applications. It is the
container platform that handles the containerized application lifecycle

What is container used for?
 Speedy deployments over multiple environment with consistency of code and configuration
 Promote concepts of Immutable Infrastructure
 Enhances the portability of application
 Infuse self-healing, and Auto scaling to introduce hands-off experience
  Reduce expenses by optimizing resources and operations
  Improves Uptime and reduces MTTR at the same time

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Who uses containers:

Building Blocks of Container Ecosystem at Enterprise:

DEVELOPERS
 Self Service with automated

provisioning
 Flexible technical stack and

application framework
 Build and run containers

consistently across multiple
environments (Dev, Test,
Perf)

 Rapidly iterate, deploy to
production faster

IT MANAGEMENT
 Run on any Infrastructure –

Private, Public, Hybrid
 Better capacity utilization

and control on infrastructure
spend

 Enable standardization of
process and patterns – Load
Balancing, Secret
management, deployment

BUSINESS
 Provides speed and Agility
 Time to market is reduced
 Lowering IT costs
 Reduction in Deployment

Failure

DEVOPS SECURITY

APPLICATIONS

CONTAINERS

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

What does Container Technology offer?
It manages the lifecycle of containerized applications
 Workload Isolation, Service Discovery, Load Balancing, Configuration management
 Management of multiple Nodes in a cluster
 Scheduling of resources according to workload requirement
 Scaling of applications to a desired number of replicas
 Keeping health check record, self-healing
 User management, Secret management, authorization using RBAC model

Key Components of Container platform:
 Cluster Management
 Container Registry
 Container Services
 Scheduling

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Typical CaaS workflow:

DEVELOPERS

BUILD SHIP RUN

IT OPERATIONS

Development Environments Deploy, Manage, ScaleSecure Content & Collaboration

Containers as a service
Application Services

Cluster Manager

Controller

Scheduler

Core Conatainer Services

Container Registry

Log Management

Health
&

Monitoring

Service
Discovery

Compute Storage Networking

Physical Infrastructure

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Orchestration Technology

Deployment

Container Type

Master Cluster Setup

Workloads

Orchestration Capabilities

RBAC

Application scalability
constraints

Load Balancing within
cluster

Open Source Kubernete

On-Premise, Private &
Public

Docker and ContainerD

Manual and Complex

Workload can run on any
Kubernete Cluster

Rich features,
Customizable

Works , Supported by
RBAC author

Deployment definition
supports both manual
and automatic

Exposed via services, can
be used to load balance
within

Amazon Service

Only on Amazon AWS
EKS Platform

Docker

Multiple Masters across
AZ, managed by AWS

AWS ECS Cluster Only,
Vendor Lock IN

Limited

AWS IAM

Manual Scaling

AWS ELB

Built On Open Source
Kubernete

Only on Amazon AWS
ECS platform

Docker and ContainerD

Comes with ECS Cluster

Workload can run on any
kubernete Cluster

Rich features,
Customizable

AWS IAM

Deployment definition
supports both manual
and automatic

Exposed via services, can
be used to load balance
within

Features Kubernetes AWS ECS AWS EKS

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Auto Scaling for
applications

Application Rolling
upgrade/rollback

Block Storage

Networking

Nodes per cluster

Logging

Monitoring

Multi Data Centres/AZs

SSH access to
Infrastructure

Hybrid Cloud Support

Supports by number of
pods as well as resource
metrics such as CPU,
memory utilization and
custom

Yes

Flexible

Flat network model via
overlay, Requires 2 CIDRs

5000

Mature, Flexible, ELK,
FluentD

cAdvisor, sysdig,
Prometheus/Grafanna

Kubernetes
Federation(v1.9)

YES

YES

Cloudwatch alarms,
Lambda Functions

yes

AWS EBS

AWS VPC

1000

AWS Cloudwatch,
CloudTrail

AWS Cloudwatch,
CloudTrail, Partner tools
Datadog, Sysdig

Multi AZ

YES

No

Supports by number of
pods as well as resource
metrics such as CPU,
memory utilization and
custom

yes

AWS EBS

AWS VPC

Mature, Flexible, ELK,
FluentD, Cloudwatch

cAdvisor, sysdig,
Prometheus/Grafanna

Multi AZ

YES

Features Kubernetes AWS ECS AWS EKS

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
  Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
  Subscribe to security for the OS and any software and install on the docker

  Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
  Remove Capabilities/access that are not required by your software
  Do not run containers as uid 0
  Create isolated user namespace limiting the maximum privileges of the containers over the host
  Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
  Do not run unverified software and / or from sources you don’t explicitly trust
  Deploy a container-centric trust server
  Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
  Do not use environment variables for secrets
  Do not embed any secrets in the container image
  Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
  Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
  Subscribe to security for the OS and any software and install on the docker

  Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
  Remove Capabilities/access that are not required by your software
  Do not run containers as uid 0
  Create isolated user namespace limiting the maximum privileges of the containers over the host
  Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
  Do not run unverified software and / or from sources you don’t explicitly trust
  Deploy a container-centric trust server
  Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
  Do not use environment variables for secrets
  Do not embed any secrets in the container image
  Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

Implementation of Container Platform at Enterprise scale
Key Points to consider in implementation:
Understand Requirement:

 What kind of target environment (Linux, Windows etc.)
 Is it Pure cloud, or Hybrid stack to support
 Is it all going to be new development or need to connect with existing Infrastructure
 Workload Types, Availability requirement, Performance, Security, Volumes

Select and Understand Reference Architectures
– Kubernetes, AWS ECS/EKS, Mesosphere

Selection of Vendor/Technology for Container platform
 Kubernetes – Multi Cloud support, widely accepted in industry now
 Docker Swarm - Built on Native Docker technology
 AWS ECS - Elastic Container Service
 AWS EKS - Managed Kubernete service on AWS , New AWS service offering
 OpenShift - PaaS based on Kubernete
 Azure Container - Integration with Azure Services
 Mesosphere – Designed for large workloads

Enterprise Implementation of Container platform includes
 Service discovery
 Networking
 Security
 Centralized Logging
 Monitoring framework

Selection of Container platform:
Comparison between few popular container platforms in the market

IMAGE SECURITY
 Image Verification

 Image Auditing

 CI/CD Integration

 Registry Security

 License scanning

 Static content scanning

RUNTIME SECURITY
 Cluster Integration

 Service based security

 Intelligent Policies

 Behavioral Threat detection

 Threat Protection

NETWORK SECURITY
 Network Policies

 Container Segmentation

 Network Enforcement

 DDOS, DNS attack protection

 Web Application Firewall

Implementing Container at Enterprise level - Focus areas to consider
 Container Format – Standardizing container format
 Container Runtime – Supporting Container runtime
 Container Management - Ecosystem for deployment/app logic containerization
 Container Security consideration
 Orchestration and Control of Multi Cluster setups
 Aligning App Architecture and Deployment Architecture
 IaaS Integration and Abstraction
 Complex Multi Cloud support and Federation
 API and Gateway platform alignment
 Development standards, Tools, Language, Framework

Getting started Inputs while Implementing the Container platform in Enterprise
 Registry namespace practices – naming convention, organizational layout, taxonomy
 Docker image naming conventions
 Docker versioning conventions
 Authentication requirements
 Docker image registry hosting requirements
 When you can or can’t proxy images from the public Docker hubs
 Docker image cleanup/garbage collection requirements (on a node, in the registry)
 When persistent volumes are appropriate and how they should be configured
 Requirements about the statelessness of container content – basically anything you write to a

non-persistent volume in a container should be treated as perishable and throw-away-able
 Service discovery requirements – naming conventions when used with Kubernetes
 Logging requirements – how to log content in a container what to use to collect, index, search those logs

Containerized Application Lifecycle Management:
How to manage container in production or at scale in Enterprise
Below diagram depicts a typical container application lifecycle

ENGINE SECURITY
Unprivileged deamon Namespaces Resource quotas

CONTAINER PLATFORM SECURITY
Rbac Volume encryption Network encyrption Secret management

CONTAINERS + Microservices = Perfect Match for Enterprises
Microservices, Cloud Native applications are new generation application architecture. It decomposes the big
monolithic application into small, discrete functions which can build and evolve independently

 Each Microservice is self-contained, Single business capability

 Each service is a separate codebase

 Each service persists their own data or external state

 Do not share data with other microservice

 Lightweight communication mechanism, HTTP resource API

 Independently Deployable

 Services don’t need to share same technology stack, framework etc.

 Design for failure

 Decentralized Governance

Mindtree [NSE: MINDTREE] is a global technology consulting and services company, helping Global 2000 corporations marry scale with
agility to achieve competitive advantage. “Born digital” in 1999, more than 340 enterprise clients rely on our deep domain knowledge to
break down silos, make sense of digital complexity and bring new initiatives to market faster. We enable IT to move at the speed of
business, leveraging emerging technologies and the efficiencies of Continuous Delivery to spur business innovation. Operating across 17
countries, we’re consistently regarded as one of the best places to work, embodied every day by our winning culture made up of 19,000
entrepreneurial, collaborative and dedicated “Mindtree Minds.” To learn more, visit www.mindtree.com or follow us @Mindtree_Ltd.

Containers are natural fit for Microservice implementation. The container environment isolates between
multiple services running on the same host, this avoids the risk of language, library, framework dependencies
used by one microservice colliding with that of another. Containerized microservices are “Portable” across
machines and providers, runs faster than VMs

Advantages of Microservice in containers:
1. Faster start time – Docker container starts in seconds, VM with complete OS takes minutes to load

2. Quicker Deployment – With Docker, we need to just download an image to run on any server

3. Easier management and scaling of containers

4. Better management of resources, more containers on a single server

5. Wider OS support – Docker for Debian, Mac, Windows etc.

Containers, Microservices, DevOps all combine very well to provide the Business and Technology Agility to
Enterprises at scale. There are multiple paths to adopt containers, Every enterprise will have its own container
adoption journey – Transforming Monolith to Microservices based architecture, Building Cloud Native apps,
Adopting Hybrid Clouds.

 Reviewing 12-Factor Industry characteristics -
https://www.mirantis.com/blog/how-do-you-build-12-factor-apps-using-kubernetes/

 Review Monitoring framework/Tools

Common Challenges in a Multi Cluster setup of Containers in Enterprises
 Managing Upstream Kubernetes versions
 Standardizing Multi Cluster deployments
  Versions, Networking, Ingress, Monitoring, Logging, Add-Ons
 Providing End to End Security
  Image Scanning, Host & Cluster Scanning, Identity Management
 Centralized Application Management
  Application Modelling and Definition
  Environment – Application runtime management
  Change Management
  Application Monitoring, Logging
 Telemetry – Service Dependencies, Traffic Flow, Distributed tracing

Few best practices implementing containers in Enterprises:
 Build Homogeneous Clusters: Offers similar capabilities and services for container workloads
  Capabilities like External Load Balancer. Ingress Controller, Dynamically provisioned
  Uniform K8S service configuration, RBAC policies
  Support for add-ons like helm charts
 Decouple Cloud Infrastructure and K8S provisioning
 Bring up Consistent Infrastructure on multiple clouds., E.g. – Infra-as-a-code tools like Terraform work with

most cloud providers
 Avoid Overlapping of IP Address across cloud in multi cluster setup
 Use the same Configuration management tool and scripts to setup all clusters
 Avoid Maintaining multiple resource definition for your clusters
 Ease of cluster operations and management – Similar add-ons, monitoring and Logging solution
 User Management: Integration with a common Identity provider, Common RBAC policies
 Uniform Namespace management for sharing clusters with different teams

Container Security:
With increasing adoption of container at enterprise level and various application workloads running in

container – It has become imperative to plan/design container security
 Only approved/certified content is running in production
 Industry and Government Standards and compliance are met
 Mitigation of External threat

Risks associated with container platform

 Docker host and kernel security: Any attacker compromises your host system

 Best Practice:
  Make sure your host & Docker engine configuration is secure (restricted and authenticated access,

encrypted communication, etc.
  Subscribe to security for the OS and any software and install on the docker

  Container breakouts: Docker container accessing sensitive information from the host bypassing isolation
checks

 Best Practice:
  Remove Capabilities/access that are not required by your software
  Do not run containers as uid 0
  Create isolated user namespace limiting the maximum privileges of the containers over the host
  Keep an eye on dangerous mountpoints from the host: the Docker socket (/var/run/docker.sock), /proc,

 /dev, etc

 Container Image Authenticity: Pulling images without using any trust and authenticity mechanism
 Best Practice:
  Do not run unverified software and / or from sources you don’t explicitly trust
  Deploy a container-centric trust server
  Enforce mandatory signature verification for any image that is going to be pulled or running on your

 systems

 Compromised Secrets: Sensitive information compromised like user password hashes, server-side
certificates, encryption keys

 Best Practice:
  Do not use environment variables for secrets
  Do not embed any secrets in the container image
  Deploy a Docker credentials management software if your deployments get complex enough

 Vulnerable container pay load – What if application running on container has vulnerabilities. Having
generous logs and events from your service and hosted can greatly help in detecting the anomalies at
container run time

Container Security - Indicative Reference Architecture

