
WHITE PAPER 
RedHat OpenShift Container Platform

Abstract

• Applications are designed around smaller independent 
components called microservices.

• The decomposition of applications into smaller 
components has distinct advantages of developing 
applications faster and delivering them in a more 
resilient way—both of which are better aligned with 
today’s business needs. However, this design adds 
complexity in the application layer for IT operations. 

• For IT operations to support this new application 
architecture, the underlying middleware, runtimes and 
other software services needed for application, the 
lifecycle management should be highly automated and 
have their complexity abstracted away.

• Standardization and platform abstraction not only make 
operations more efficient in handling developer needs, 
but they also help streamline the deployment pipeline, 
thereby accelerating the delivery of microservice-based 
applications. 

• The shift to modern application development and the 
need for rapid and continuous deployment make a 
strong DevOps-enabling platform, a key component in 
the IT arsenal.

1.1 Introduction

Cloud Computing

Cloud computing is the delivery of on-demand computing 
resources, everything from applications to data centers 
over the internet. 

Benefits:

• Elastic resources: Scale up or down quickly and easily 
to meet a demand.

• Metered service: You only pay for what you use.

• Self-service: All the required IT resources with self-
service access.

Based on a cloud location, we can classify cloud as:

• Public: A public cloud is where users don’t need 
to purchase hardware, software, or supporting 
infrastructure, which is owned and managed by the 
providers.

• Private: A private cloud is pretty much same as public 
cloud and has similar advantages, but is provisioned 
for a single organization over private infrastructure.

• Hybrid: As name suggests hybrid cloud is a type of 
cloud computing where private/on-premises cloud 
infrastructure integrates with public cloud services.

Based on a service that the cloud is offering they can be 
classified as:

• IaaS (Infrastructure-as-a-Service)

• PaaS (Platform-as-a-Service)

• SaaS (Software-as-a-Service)

Containerization

• A container image is a lightweight, stand-alone, 
executable package of a piece of software that 
includes everything needed to run it: code, runtime, 
system tools, system libraries, settings.



• Linux containers are a key building blocks for 
the modern platform. Today, the most popular 
Linux container format to build a robust DevOps 
environment is based on the Docker project. Docker 
is an open-source software container platform that 
makes the deployment of application easier and also 
run applications using containers.

• Containerization based on virtualization allows any 
application bundled in a container which can be run 
without the hassles of any dependency like libraries.

• They are a kind of isolated partition inside a single 
operating system.

Orchestration

• While containers are effective at the heavy lifting 
while instantiating an image or application component 
on a single hosting environment, most modern 
applications are comprised of many components that 
span multiple hosts that in turn could be in various 
geographic regions. This is where orchestration and 
management become a question.

• Applications generally are built up of individually 
containerized components/micro services that 
must be managed for the application to perform as 
expected.

• Container orchestration is the process of managing 
or organizing multiple containers in this fashion.
For example: Docker Swarm, Kubernetes, Mesos and 
Marathon

• Kubernetes is an open source platform initially 
developed by engineers at Google, which automates 
container operations. It allows you to build application 
services that span multiple containers, schedule those 
containers across a cluster, scale those containers, 
and manage the health of those containers over 
time. Kubernetes handles container deployments 
and orchestration as a cluster manager by using a 
declarative model that enables the user to define their 
application needs.

DevOps

• DevOps help organizations respond in a more agile 
manner to changing business requirements by:

• Automating and monitoring the process of software 
creation, from integration, testing, releasing to 
deploying and managing it.

• Reducing the development cycles.

• Increasing the frequency of deployment.

• Streamlining the development and release pipeline.

E.g.: Docker, Puppet, Kubernetes, Ansible, Chef and 
so on.

PaaS

• The real benefit of Cloud computing is the operational 
agility provided by the Cloud platform in which we 
don’t have to worry about IT infrastructure and we can 
just focus on building our apps 

• In PAAS the capability provided to the consumer is 
to deploy applications created using programming 
languages, libraries, services, and tools supported by 
the provider onto the cloud infrastructure. 

• The consumer does not manage or control the 
underlying cloud infrastructure including network, 
servers, operating systems, or storage, but has 
control over the deployed applications and possibly 
configuration settings for the application-hosting 
environment

• PAAS originated from shared IT service model wherein 
multiple tenants ran applications on shared systems

• Containerization is an ability to virtualize the 
Operating System (OS) resources instead of the 
underlying hardware while it sits directly on top of the 
bare metal.

For Example: Azure’s Cloud Services, Amazon Web 
Services (AWS)’s Elastic Beanstalk, Google’s App 
Engine

1.2 OpenShift Container Platform

Understanding OpenShift Container Platform:

Let us now understand what OpenShift Container 
platform is.

• RedHat OpenShift Container Platform is a PAAS 
offering from RedHat.

• It is a supported distribution of Kubernetes using 
Docker containers and DevOps tools for accelerated 
application development.

• Open Shift also allows you to have highly available, 
self-healing, and auto-scaling applications without any 
of the manual setup that would typically need to be 
done in a traditional environment whether they’re on-
premise or in the public cloud.

• OpenShift includes a full complement of open source 
programming languages giving polyglot choice to 
developers.

Benefits of OpenShift:

Having understood what OpenShift is, what are the 
benefits of this Container platform?

• Provides a container management platform for your 
complex IT infrastructure. 

• Kubernetes is the industry leading open source 
container orchestration framework and Red Hat 
OpenShift Container Platform is the leading enterprise 
distribution of Kubernetes.

• Enables your development team to focus on designing 
and testing applications rather than spending 
excessive time in managing and deploying containers.

• It includes containerization for multitenancy, 
automatic provisioning, automatic application 
scaling, continuous integration, and self-service for 
developers. 



• Accelerate application development, test that 
application throughout the IT architecture without 
being hindered by conflicts of framework, any 
deployment issue or language inconsistencies.

• OpenShift accelerates development and delivery of 
applications from Java EE to Node. JavaScript for web, 
mobile and enterprise applications, and can be a key 
enabling technology in a DevOps transformation.

Analyzing the advantages of OpenShift over others:

OpenShift allows a variety of options to deploy 
application source codes. They are available in 3 forms, 
namely:

• OpenShift Online

• OpenShift Enterprise

• OpenShift Origin

OpenShift is developed and supported by Red Hat 
with Kubernetes at its core. So, from a vendor support 
perspective, enterprises are on solid ground with 
OpenShift. 

OpenShift has the edge in management and automation 
whereas other container management platforms shine 
with broad application support and ease of use.

Features of RedHat OpenShift:

• Software Defined Network.

• Persistent Storage.

• Container Native Storage (CNS / SDS).

• Log Aggregation and Analysis.

• Monitoring | Telemetry.

• Capacity Management.

• Egress Routing for Enterprise integration.

• Router Sharding.

• Full Stack Support.

• System Certifications and Patching.



1.3. Overview of OpenShift Architecture

OpenShift Container Platform is a set of modular 
components and services built on top of Red Hat 
Enterprise Linux, Docker, and Kubernetes. OpenShift adds 
capabilities such as remote management, multitenancy, 
increased security, application life-cycle management and 
self-service interfaces for developers.

In the above figure, going from bottom to top, and from 
left to right, the basic container infrastructure is shown, 
integrated and enhanced by Red Hat:

• The base OS is Red Hat Enterprise Linux (RHEL).

• Docker provides the basic container management API 
and the container image file format.

• Kubernetes manages a cluster of hosts (physical or 
virtual) that run containers. It works with resources 
that describe multi-container applications composed 
of multiple resources, and how they interconnect.

• Etcd is a distributed key-value store, used by 
Kubernetes to store configuration and state 
information about the containers and other resources 
inside the OpenShift cluster.

The working of RedHat Openshift:

An OpenShift cluster is a set of node servers that run 
containers and are centrally managed by a set of master 
servers. A server can act as both a master and a node, but 
those roles are usually segregated for increased stability.



Master: The master runs OpenShift core services such 
as authentication and provides the API entry point for 
administration. 

Nodes: The nodes run applications inside containers, 
which are in turn grouped into Pods. This division of labor 
comes from Kubernetes, which uses the term ‘minions’ for 
nodes.

ETCD: OpenShift masters run the Kubernetes master 
services and etcd daemons, while the nodes run the 
Kubernetes kubelet and kube-proxy daemons. Scheduler 
and management/Replication in the figure are Kubernetes 
master services, while Data Store is the Etcd daemon.

Pods: The Kubernetes scheduling unit is the Pod, which 
is a grouping of containers sharing a virtual network 
device, internal IP address, TCP/UDP ports, and persistent 
storage. A Pod can be anything from a complete 
enterprise application, including each of its layers as a 
distinct container, to a single microservice inside a single 
container. Kubernetes manages replicas to scale pods. A 
replica is a set of pods sharing the same definition.

Project: A project groups Kubernetes resources so that 
the access rights can be assigned to users. A project can 
also be assigned a quota, which limits its number of 
defined pods, volumes, services, and other resources.

Images: The Source-to-Image (S2I) process in OpenShift 
pulls code from an SCM repository, automatically detects 
what kind of runtime that source code needs and starts 
a pod from a base image specific to that kind of runtime. 
Inside this pod, OpenShift builds the application the same 
way that the developer would. 

If the build is successful, another image is created, 
layering the application binaries over its runtime, and this 

image is pushed to an image registry internal to OpenShift. 
A new pod can then be created from this image, running 
the application. S2I can be viewed as a complete CI/CD 
pipeline already built into OpenShift.

OpenShift resources, such as images, containers, pods, 
services, builders, templates, and others, are stored on 
Etcd and can be managed by the OpenShift CLI, the web 
console, or the REST API. These resources can be viewed 
as JSON or YAML text files and shared or retrieved on an 
SCM system like Git or Subversion.

Networking: Docker creates a virtual kernel bridge and 
connects each container network interface to it. Docker 
itself does not provide a way to allow a pod on one host 
to connect to a pod on another host or to external world. 
Kubernetes service and route resources need external 
help to perform their functions. 

A service needs software-defined networking (SDN) which 
will provide visibility between pods on different hosts, 
and a route needs something that forwards or redirects 
packets from external clients to the service internal IP. 
OpenShift provides an SDN based on Open vSwitch, and 
routing is provided by a distributed HAProxy farm.

Storage: Kubernetes recognizes a persistent Volume 
resource, which can define either local or network storage. 
A pod resource can reference a PersistentVolumeClaim 
resource in order to access storage of a certain size from a 
Persistent Volume.

HA: High Availability (HA) on an OpenShift Container 
Platform cluster has two distinct aspects: HA for the 
OpenShift infrastructure itself (that is, the masters); and 
HA for the applications running inside the OpenShift 
cluster. OpenShift provides a fully supported native HA 
mechanism for masters by default.



1.4. POC (Installation of OpenShift Enterprise on AWS)

Minimum Requirements:

Prerequisites

Master Etcd Node

1 1 1

Name CPU Memory Disk

Master 2 8GB

15GB / + /var
10G /home

25GB Unallocated
(for setting up docker 

storage later)

Node 1 and 2 2 8GB

15GB / + /var
10G /home

25GB Unallocated
(for setting up docker 

storage later)

This POC was designed with the following: 

• AWS for EC2 instances as the compute resource.

• AWS VPC for the private communication.

• Domain registered in GoDaddy for URL access of 
OpenShift.

• RedHat Enterprise Linux 7 as the OS.

• RedHat subscription for enabling repos to install 
Atomic Host.

Capability of POC

• Installation and configuration of RedHat OpenShift 
Container platform.

• Managing pods and image streams.

• Manage access privileges and quota for system 
resources.

• Troubleshooting.

What are your thoughts on RedHat OpenShift? Share your comments with us at info@mindtree.com

References

https://www.openshift.com/ 
https://www.redhat.com/en/technologies/cloud-computing/openshift 
https://docs.docker.com/registry/ 
https://github.com/openshift/openshift-ansible 
https://www.redhat.com/en/resources/enterprise-linux-atomic-host-datasheet


