

© Mindtree limited 2014 Page 1 of 5

SV Assertion Based Error Signaling Checks

Application across popular bus protocols

April 2014

Mindtree Technical White Paper

© Mindtree limited 2014 Page 2 of 5

SV Assertion Based Error Signaling Checks

Application across popular bus protocols

 Narendra Kumar Kayarmar

narendra_kayarmar@mindtree.com
Nithin Kumar

nithin_kumar@mindtree.com
 Mindtree Ltd

Global Village Tech Park, Bangalore, India

Abstract - Today, many External Bus Interface Pro-
tocols have error signaling incorporated. The noise
and other system anomalies prevent any standard
protocol to deliver error-free data. Interconnect pro-
tocols without error signaling suffers a performance
hit in this regard. Error Signaling minimizes the data
loss during a bus transaction. This paper presents an
effective approach to verify the compliance of the
error signaling implementation with the specification.

This paper explains how a procedural assert of an
error signaling check can be nested in the action
block of a concurrent assertion used to verify the re-
lated protocol, which is exemplified for a DFi™ error
signaling interface.

I. BACKGROUND [1]

An assertion is basically a "statement of fact" or
"claim of truth" made about a design by a design or veri-
fication engineer. An engineer will assert or "claim" that
certain conditions are always true or never true about a
design. If that claim can ever be proven false, then the
assertion fails (the "claim" was false).

System Verilog assertions are built from sequences
and properties. An assertion works by continually at-
tempting to evaluate a sequence or property. Properties
are a superset of sequences separated by implication (|=>
or |->) operator. The clause to the left of the implication
is called the antecedent and the clause to the right is
called the consequent. Evaluation of an implication starts
through repeated attempts to evaluate the antecedent.
When the antecedent succeeds, the consequent is at-
tempted, and the success of the assertion depends on the
success of the consequent.

II. INTRODUCTION

The reuse of programming code is a common tech-
nique which attempts to save time and energy by reduc-
ing redundant work. Organizations can realize time to
market benefits for a new product with this approach. At
a time when functional verification is consuming much
if not most of the IC design cycle, code reuse promises
to slash the amount of verification code and the time
required to build a verification environment and start
debugging.

Assertions are used to verify the external bus interface
protocols and to test the correctness of the signal ex-
pected behavior.

In a bus protocol, when an error is detected by a node
it sends an error flag on the bus. An assertion is written
to check the compliance of this error response with the
specification. This assertion requires intermediate factors
in the consequent of the property.

These intermediate factors can be eliminated and the
related protocol assertion can be reused to check the
compliance of the error response with the specification.
In essence, this paper suggests methods for effectively
combining assertions for error response checking, there-
by reducing the assertion coding effort.

1. Limitations

As tested, this form of coding currently lacks support
from one of the Industry leading simulators.

2. Summary of Contributions

The following pages contain below information
needed for this report.

 Methodology
 Future Work

III. METHODOLOGY

mailto:narendra_kayarmar@mindtree.com
mailto:nithin_kumar@mindtree.com
http://en.wikipedia.org/wiki/Time_to_market
http://en.wikipedia.org/wiki/Time_to_market

© Mindtree limited 2014 Page 3 of 5

The approach can be better explained using Causality

[2] (also referred to as causation [3]). Causality is the rela-
tion between an event (the cause) and a second event
(the effect), where the second event is understood as a
consequence of the first.

Anything that affects an effect is a factor of that ef-
fect. A direct factor is a factor that affects an effect di-
rectly, that is, without any intervening factors. (Interven-
ing factors are sometimes called "intermediate factors".)
The connection between a cause(s) and an effect in this
way can also be referred to as a causal nexus [2].

Consider three events X, Y and Z. Their relationship
based on their occurrence is X => Y => Z.

The causal direction is indicated by => operator. X is
the cause for Y and both X and Y are the cause for Z. Y is
a direct cause factor for the effect Z and X is the direct
cause factor for the effect Y. Here Y is an intermediate
factor. If you eliminate Y and if you can make X as the
only cause factor of Z, then X becomes a direct cause
factor of Z. Thereby the equation reduces to X => Z.

Consider a protocol in which two blocks communicate
using a 3 wires, consisting of a request (REQ), a grant
(GRA) and an error (ERR). Requester asserts REQ to
issue a request. When Granter has completed the work
associated with a request, it asserts GRA and there must
be a maximum RSP_TIMEOUT cycles between a re-
quest and its corresponding grant. The timing parameter
ERR_RSP (greater than RSP_TIMEOUT) defines the
maximum number of clock cycles that may occur from
the request to the assertion of the ERR if the granter fails
to assert the grant signal within the stipulated timeframe.

Fig.1 shows the block diagram of the requester and
granter. Fig.2 and Fig.3 illustrates the protocol descrip-
tion.

Fig 1 Direction of signaling in from a Requester/Granter

Fig 2 GRA asserts within RSP_TIMEOUT following REQ

Fig 3. ERR asserts within ERR_RSP following no GRA

In order to check the timing compliance of the re-
quester/granter protocol, you require two assertion to
check the timing between

a. Assertion of REQ and assertion of GRA
b. Assertion of REQ and assertion of ERR

A pseudo-code for the requirement is shown below,

assert property (REQ |->## [0:RSP_TIMEOUT] GRA); (1)
assert property (REQ |-> !GRA [*RSP_TIMEOUT] |=> ERR);(2)

Here the error signaling check ‘(2)’ is affected by two

factors. One is the REQ and the other is !GRA

[*RSP_TIMEOUT]. Significant amount of time is spent in
deducing the intermediate logic !GRA[*RSP_TIMEOUT].

Hence, this approach is laborious considering the large
number of assertions for error response scenarios.

 According to the new methodology, you can elimi-
nate the need of checking the intermediate factor
!GRA[*RSP_TIMEOUT] and make the error signal check
directly affected by REQ.

This methodology is as shown,
assert property (REQ |-> ## [0:RSP_TIMEOUT] GRA);

 else begin
assert property (REQ |-> ## [ERR_RSP] ERR);
end
This is done by nesting the error signaling check in

the main protocol check assertion. Here we can see that
the main protocol check ‘(1)’ is reused to eliminate the
intermediate factor in the error signaling check ‘(2)’.
Thereby making the final effect directly affected by the
first cause without any intervening factor.

This approach has been tested for DFi™
[4] 3.0. DFi™

specification states that, for data errors, the timing pa-
rameter is defined as the max delay from dfi_wrdata_en
or dfi_rddata_en to the assertion of the dfi_error signal.

For command errors, the timing parameter is defined
as the max delay (Terror_rsp) from command. Fig 4
shows the code snippet for DFi™ error interface.

The PHY signals an error if the required PHY timing
(Trddata_en) is not met by the MC. The error interface
check is nested within the cause protocol as shown in
Fig.5.

http://en.wikipedia.org/wiki/Causality#cite_note-1
http://en.wikipedia.org/wiki/Event_(philosophy)
http://en.wikipedia.org/wiki/Result

© Mindtree limited 2014 Page 4 of 5

Fig 4 Code Snippet for DFI error interface check

Fig 5 Simulation waveform for theDFi error interface check

IV. CONCLUSION

We have proposed an effective approach to code as-
sertions checks for error signaling for an external bus
interface protocol. This approach involves reuse of as-
sertion code to further reduce the coding efforts.

V. FUTURE WORK

The approach can be extended to other protocols such
as AMBA–APB/AHB/AXI having error signaling and
respective response timeouts.

ACKNOWLEDGEMENTS

The authors would like to thank Santosh Shivadatta
(Director & Head – VLSI ,Engineering R&D Service
Line , Mindtree Ltd) for his valuable comments and
suggestions to improve the quality of the paper. They are
also grateful to Vinod Vishwa Gadde (Senior Engineer ,
Mindtree Ltd) for content review of this paper. This
work was supported in part by Mindtree VLSI-CoE.

REFERENCES

1. http://www.sunburst-
de-
sign.com/papers/CummingsSNUG2009SJ_SVA_Bin
d.pdf

2. http://en.wikipedia.org/wiki/Causality

3. 'The action of causing; the relation of cause and
effect' OED)

4. http://www.ddr-phy.org/

ABOUT THE AUTHORS

Narendra Kumar Kayarmar
received M.Tech degree in
Electronics from BMS college
of Engineering Bangalore, In-
dia in 2010. Currently he is

working as senior Engineer at eRnD VLSI service line in
Mindtree Ltd Bangalore. He is a expertise in ASIC and

SOC verification and worked in
various client projects.

Nithin Kumar V R received
B.E degree in Electronics and
Communication Engineering
from JSS Academy of Technical
Education Bangalore, India in

2011. Currently he is working as senior Engineer at
eRnD VLSI service line in Mindtree Ltd Bangalore. He
has expertise in IP level verification.

http://en.wikipedia.org/wiki/Causality
http://en.wikipedia.org/wiki/OED
http://www.ddr-phy.org/

© Mindtree limited 2014 Page 5 of 5

This document is the exclusive property of Mindtree Limited (Mindtree). The recipient agrees that they will not copy,
transmit, use or disclose the confidential and proprietary information in this document by any means without the ex-
pressed and written consent of Mindtree. By accepting a copy, the recipient agrees to adhere to these conditions to the
confidentiality of Mindtree's practices and procedures; and to use these documents solely for responding to Mindtree's
operations methodology.

