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ABSTRACT 
 
 

The article summarizes our IP design lifecycle and some of the IP design strategies we practice -  
describes the various design strategies, optimizations and techniques we have used for keeping a 
check on the power consumption challenge and hence achieving industry best numbers in 
current consumption. - How Synopsys tools were efficiently used in different phases of the IP 
development cycle. 
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1 Introduction 
Mindtree Short Range Wireless group is a part of the Engineering R&D Service Line which 
offers various wireless IPs targeted to ASICs on various technology nodes.  
 
With increased SoC complexities it becomes extremely important that any functional defects are 
detected as early as possible. One relatively cheaper and efficient way achieving this is the 
FPGA prototyping which also provides a relatively more accurate performance with respect to 
the ASIC.  
 
In this paper we highlight the importance of IPs in an SoC, the development cycle of an IP and 
advantages of FPGA prototyping for IP validation as well as system validation, good design 
practices and steps which will be helpful for any IP development and could be adopted to shorten 
the IP development cycle and hence more time for system validation. We take a reference design 
and explain how efficiently we can use the Synopsys Tool chain in various stages of the 
development lifecycle and how it can make a positive impact on the time to market (TTM) and 
the quality of results (QOR).  
 

2 IP Development 
Before talking about IPs we shall talk about SoCs where we can get a complete system integrated 
on to a single chip.  A typical SoC might contain more than one processor core, different storage 
memories (ROM, RAM, EEPROM, FLASH), Clock sources (PLLs), Power circuits (Voltage 
Regulators, DC-DC level shifters), Peripherals (RTC), External Interfaces (USB, Ethernet, 
UART), Analog Interfaces (ADC, DAC) and Embedded Software. Some types of SoCs offer 
customizable solutions using specialized, reconfigurable processors. 
 

2.1 SoC Architecture 
Complex SoCs with a multitude of supported protocols and communication interfaces are seen  
as a common design part even in smartphones now a days. Getting such a complex design into 
production has also become more challenging not only because of the stricter time to market 
guided by the highly competitive end market but also a higher demand on the non-functional 
metrics like power, area and pin count. Underestimation of the complexity of the design will end 
up in schedule over-runs and hence will affect success of the product. This will include setting 
up realistic plans and deadlines and sufficiently prepared human resources. 
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2.2 IP as a building block of a SoC 
It becomes a difficult task for the SoC designer to validate the individual IPs in a SoCs. Also  
putting more effort on the validation of the non-strategic IP modules inside an SoC may not help 
to differentiate your product from the others in the market. The product is going to sell becuase 
of its end functionality and is not becauseof having an excellent peripheral.For example if we 
take a camera the camera is going to sell because of its ability to take pictures with very fine 
details , its performance in the low light conditions and its ability to enhance the image using the 
various image processing algorithms.The camera is not going to sell just because of having an 
excellent USB or Wi-fi connectivity alone.So it makes complete sense for an SoC designer to put 
effort in the integration aspects of the system and on the system validation rather than 
concentrating on developing individual IPs from scratch.  
 
This suggests IP usage as  a powerful way to speed up the product launch. These IPs can be Soft 
IPs (Synthesizable RTL, process independent) or a Hard IPs (synthesized netlist with timing 
information, easy to integrate and has predictable performance.) Any IP taken for SoC 
integration is expected to have some of the good characteristics like configurability and 
availability of a standard interface for easier integration, compliant to good design practices. IP 
integration can be easy if complete set of deliverables are provided – RTL, testbenches, synthesis 
scripts and documentation. 
 

                                    SoC 
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Figure 1 SoC Architecture 



 

SNUG 2014 6 IP Design and Porting using Synopsys Tools 

 

2.3 SoC validation – challenges 
To better visualize the validation challenge of an SoC we will refer to the below table where the 
whole validation cycle is spread across different milestones in 3 or 4 macro stages for the 
multiple IPs included in the design. 
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SIMULATION-based VERIFICATIONx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

FPGA based VERIFICATION x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

HW/SW Co-VERIFICATION x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

DRIVER DEVELOPMENT x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

APPLICATION TESTING x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

IC DESIGN x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  
Figure 2 Possible IP components in a SoC 

 
Today’s SoCs designs are highly complex because of the following factors 

 High density circuitry as more features are included but with least impact on size. 
 Heterogenous components (often from different vendors) are integrated into the same 

SoC.  
 Time to market. 
 High speed requirement – routing and timing closure. 
 Power grid design – multiple voltage domains 
 Complex clock tree – a large number of gated, generated clocks. 

 

2.4 IP Development Life cycle 
 
The main steps in an IP development life cycle are, 
 

1. Requirement analysis and understanding.  
2. Design Partitioning. 
3. Reset, clock, IO and bus interface requirements understanding. 
4. Prototyping platform development. 
5. Analysing the Tool and License requirements. 
6. System Test plan creation. 
7. Verification environment creation. 
8. FPGA prototyping and signoff. 
9. Low power mode support. 
10. ASIC porting. 
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2.4.1 Requirement analysis and planning. 

The input at this stage would be the product specification shared by the end user or it could be a 
specification released by a standard body. A feasibility study has to be done for the features 
keeping in mind about the TTM and use cases. Also sometimes it makes sense to have a roadmap 
illustrating the various milestones and the various features which will go with the associated 
milestone. This will help to incorporate any issues in the previous versions to the current 
versions and in fact the solution will be more robust and mature by the final version release. This 
is widely adopted practice especially after the smart phone revolution we have the smart phone 
vendors making their new version release almost in a span of less than six months. 
 
 

2.4.2 Design Partitioning 

This is a very critical step after the requirement freeze. The design has to be partitioned into 
software and hardware. We have to see the computation intensive blocks which will benefit from 
the parallelism in the hardware. Also time critical blocks or procedures where latency is 
unacceptable are other candidates to be implemented in hardware.  Parallel computations are best 
suited to be put in hardware. Some of the constraints will come from the protocol itself where 
protocol dictates the turnaround time for a specific procedure. For example some of the protocols 
where we have the frame structure the protocol will give the time available for the frame timing 
which includes many signal processing tasks like error coding, FFT ,filtering and CRC. This will 
give an idea to take a decision whether the procedure can be jointly implemented in hardware 
and software or it has to be completely implemented in hardware. Another important factor 
would be the cost factor. The cost of the processor and the hardware should not overshoot the 
cost factor for the complete solution.  The cost factor would be another decisive parameter to 
decide on the partitioning. In one of our system we had implemented the turbo decoder using 
multiple DSP processors. We could reduce the number of DSP processors as well as improve the 
performance and could get better timing when we moved the turbo decoder to hardware. Other 
examples are RF front end of any system which includes lots of filters is best put in hardware. If 
the algorithm to be included has lot of context switching and conditional branching it is best 
implemented in a processor. Also if you have very less time for prototype development and the 
performance is not a matter of concern implementing using a processor is the fastest option.    
 
Another very important aspect would be the throughput requirements and power. These aspects 
should be the key pointers used to define the architecture for the system. Both throughput and 
power aspect would be driven by the final use case or final ecosystem where the product will be 
used. If it is going to be sensor like application throughput may not be a towering requirement 
but it will be governed by power consumption. Especially with plethora of wearable devices 
nowadays in market power consumption is the governing factor in such cases. Also design 
partitioning should not cause frequent interactions between the software and hardware. For 
example consider a case where our device needs to send a fixed length packet with a periodic 
interval till we get an acknowledgement from the receiver and inform the software (through 
interrupt) once this is done. Now one of the best approaches for achieving this with minimal 
hardware and firmware interactions will require the following blocks to be put in the hardware 

 have a data FIFO in hardware to hold the fixed data to be sent. Software has to program 
this only once at the start of the procedure. 
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 have a timer in the hardware itself to keep track of the timing interval. Once triggered till 
the procedure is stopped the timer shall be running. 

 Let the hardware handle the packetisation/depacketisation and error checks during 
reception. 

2.4.3 Reset, clock, Memory, bus interface requirements analysis. 

We have to decide on the type of reset required for the system and the frequency at which the 
system will be clocked. Also the memory requirements for the system should be analysed. We 
have to decide if we need multiple clocks for the system. To conform to the protocol timings 
certain part of the logic or system will have to clock at a higher frequency. Specifying the multi 
cycle constraints wherever applicable and using proper handshaking in clock domain crossing 
paths is very important. 
 
Also for the low power modes we might have requirement for an RTC clock. Also depending on 
the architecture, power and throughput requirements appropriate bus interface has to be chosen 
between the hardware and software if your solution comprises of both. If the solution is offered 
as hardware IP it is better to give standard and widely used interface as connectivity option. 
 

2.4.4 Prototyping Platform Development. 

Appropriate platform has to be selected or developed for prototyping. The prototyping platform 
has to be selected based on the final application. Also we should have an initial estimate of the 
special resources like the DSP blocks and high speed transceivers required along with the 
approximate gate size to choose the FPGA.Recently there is availability of prototyping platforms 
which have a SoC FPGA which integrate an ARM core and many peripherals to the FPGA. This 
kind of platforms is very ideal for applications which require very high performance. This saves 
the board space since both the processor and FPGA is integrated into one. This also saves a lot of 
power since the interconnects between the processor and FPGA share the same silicon and hence 
the data rate between the FPGA and processor could be very high. Also we have to see the 
memory performance provided by the particular prototyping platform. The memory controller 
which is required to access the external memory could be shared between the processor and 
FPGA. But if the application requires very high performance it might be better to choose a 
system which has dedicated memory controller for the processor and FPGA.Appropriate 
platform has to be chosen from the available variants which are close to our requirements. Also 
we have to pay attention to the vendor roadmap for the prototyping platform in terms of their 
plans to support future revisions of processor core, tools etc. The debug mechanisms available 
and the tools required for development with the platform are other factors which need key 
consideration. 
 
 It is good to develop our own development platform but we need to budget good amount of time 
for this activity and have to start this activity well ahead of the IP development. Also there is a 
risk of certain components becoming obsolete so it is sensible to make the development platform 
in good numbers if we anticipate several versions or enhancements in the product or 
specification. Also there are many platforms which have the FPGA with embedded processors 
inside it. 
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2.4.5 Analysing the Tool and License requirements. 

Depending on the tool and component flow chosen we have to ensure that appropriate 
development tools and licenses are available. 
 

2.4.6 System Test plan creation and Verification environment creation. 

System test plan have to be created for verifying and validating the IP. It has to be decided 
whether a directed verification or a high level verification language will be used for verification. 
Also System level validation setup has to be defined for the prototype validation. If the IP 
consists of hardware and software it is important that the hardware software interface is modelled 
in the verification environment similar to the actual interface. The low level interface drivers 
used in the verification environment and the software should be exactly the same. If these are 
different it will allow many issues to creep through to the validation stage. 
 

2.4.7 FPGA Prototyping  

In this stage the design prototype has to be signed off against the test vectors created from the 
System Test plan created in the beginning from the requirements. Some cases for some of the 
protocols there would be test specification released by the standard body which can be used for 
sign off. FPGA prototyping offers a faster and realistic verification strategy. It facilitates the 
software development instead of waiting for the actual silicon. Even though FPGA prototyping 
offers a “close to final silicon” solution it still differs in some aspect; 

  Implementation is different due to different clock tree, reset distribution, power 
management, memories and performance. 

  Some modules cannot be ported “as is” but has to be replaced / modified with FPGA 

friendly structures. One of such component we had was the ADC which needed to be 
replaced by equivalent control logic. This ADC module though not a part of the core IP 
was still required for a more identical FPGA prototype. 

  FPGA prototype represents a limited subset of overall device operational conditions. 
 
One of the limitations with the FPGA prototyping is the limited visibility. The debugging with 
external logic analysers requires FPGA I/Os which are generally limited in number. We can 
overcome this limitation by using tools like Identify which gives debug visibility almost similar 
to RTL simulations. 
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2.4.8 Low power mode support 

After the normal flow of the prototype is validated we need to focus on the possible power 
optimizations. Power optimizations include clock gating, frequency scaling and multi voltage 
domains. Power consumption being a differentiating factor for most of the IPs it is a pre-requisite 
for most of the IPs to support the various low power modes. So basically the validation of the IP 
is not limited to the functionality testing but it should validate the various power modes 
combined with the functionality.  
 
It is better to keep the power intent of your design in a separate power intent file (may be UPF 
format). There are many advantages of following a UPF flow for your design compared to 
having the power description being added in RTL itself. Having a UPF flow will ease porting of 
the IP into designs with different power architectures. 
 

Table 1 Low Power Design- UPF Flow vs Non UPF Flow 

Feature Non-UPF Flow UPF Flow 

RTL content ISO, level shift Automatically inserted 

Synthesis create power domain Creating the power intent is the only work 

DFT Manual insertion DFT insertion simplified 

Equivalence RET flops No specific constraints required 

 

Figure 3 FPGA Adaptation - Extract from FPMM 
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2.4.9  ASIC porting 

The FPGA design prototype will have to be taken to the SoC flow once prototype testing is 
completed. The prototype has to be customized for porting to ASIC. The clock gating 
components in FPGA have to be replaced by the appropriate component available in the target 
library. Similar is the case with block RAMs used in the design. Also scan chain insertion has to 
be performed and it has to be ensured that the RTL and scan inserted netlist are logically 
equivalent. To avoid any maintainability related issues it is always better to use the same 
database across the FPGA as well as ASIC flow. The usage of appropriate compile time switches 
for selecting the FPGA or ASIC flow helped to solve this problem. The SoC specific elements 
will be selected will be included if the ASIC flow is selected and corresponding FPGA 
equivalents will be included if FPGA flow is chosen. 
 

3 FPGA Prototyping Flow 
 
We have followed the Synopsys tool flow for FPGA prototyping and for the ASIC flow. 
 

Table 2 Synopsys Tool chain 

Process Tool used 
Lint Leda 
Simulation/Coverage VCS  (Also Vendor2 simulator) 
Logic Equivalence Formality 
FPGA Synthesis SynplifyPro (Also XST, Quartus II) 
ASIC Synthesis Design Compiler 
 
 
The below figure illustrates the various steps in FPGA prototyping. 
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Figure 4 FPGA Prototyping Flow – Reference design 
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The design database which is in verilog RTL is targeted to ASIC. Hence it will have many ASIC 
specifc structures like BIST, Test ports, Clock Gates. Many of these are either irrelevant (BIST, 
Test ports) for FPGA prototype or are not FPGA friendly (Clock Gates). For the mentioned 
reasons the RTL code targeted to ASIC has to be “adapted“ to FPGA before starting the 

prototyping. There are several steps that we can do at the time of RTL development to ease this 
process which are discussed in sections 6.5.2 FPGA Synthesis challenges of ASIC design and 7.1 
Good practices that helped ASIC to FPGA porting . The SynplifyPro project is created with the 
FPGA adapted RTL along with the design constraints and the FPGA constraints. The verilog 
quartus mapped file generated in the previous step is fed as input to the quartus file along with 
the constratints in *.sdc and the Embedded LA information (SignalTap). The FPGA bitmap is 
generated after the P&R step by Quartus tool. 

3.1 Low Power Support 
 

Power consumption is an increasing challenge in the new designs. An ASIC might contain 
several power optimization techniques such as the clock gating which is the most widely used 
technique to save dynamic power, Mutli Vt cells to reduce leakage power. However it is now 
common to find more drastic power optimization methodologies like Dynamic Voltage 
Frequency Scaling (DVFS), Multiple VDD and Power gating.  A brief description of these 
methods is followed.  
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Figure 5 Power Optimization techniques in ASIC 
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3.1.1 Clock gating 

This is a widely used technique for reducing power consumption. The idea is simple – to turn off 
the clock to block/blocks based on a control signal. This control signal can be selected by the 
designer (clock gate inserted in RTL) or inferred by the synthesis tool (Automated Clock 
Gating). Clock Gating is very efficient as the clock network in a chip can consume 30-50% of 
the total dynamic power. It is obvious that gating is more effective (in terms of power saving) if 
the Clock Gate cells are placed higher up in the clock tree. Clock gating might look simple but 
the effectiveness of the technique depends on the choice of the right control signal for gating. 
More number of clock gates does not ensure more power saving but it can also lead to increased 
dynamic power consumption. Hence the challenge with clock gating is that a very deep 
understanding of the design is required.  
 
 

 
Figure 6 Clock Gating 

 
 
 

3.1.2 Dynamic Voltage and Frequency Scaling 

The DVFS technique takes advantage of the dependence of dynamic power on the Voltage and 
Frequency. This is generally used when workload is not CPU bound- In such a case we can 
operate the CPU at a scaled down voltage/frequency by providing “just-enough” computation 

power. Choosing the frequency can often be back calculated from the work load (number of CPU 
clock cycles) and deadline for the task completion. If the voltage is constant, then scaling down 
the frequency might not be a good idea, instead “race-to-idle” can be used. 
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VDD1 VDD2

FREQ = f1 FREQ = f2 < f1 FREQ = f1

 
Figure 7 Dynamic Voltage and Frequency Scaling 

3.1.3 Power Gating 

Gating the power itself is a powerful technique to save power. Again a very good understanding 
of the operational modes is required for deciding the power shutdown possibility. A few registers 
might need to be implemented using special retention cells. We have to note that certain register 
values which can be derived based on other registers need not be part of the retention. A 
challenge with the power gating is the wakeup time required for the system to be completely 
operational. If we can define appropriate policies when gating will be enabled only specific 
values which can have non reset values at the time of gating needs to be part of retention cells. 
Some systems may not use retention cells but instead might chose to store and restore the 
registers. Before gating, the registers have to be stored to a non-volatile memory and after the 
gating is disabled the registers have to be restored with the corresponding register values stored 
in the non-volatile memory before enabling the power gating. 

 
 

Clock

ISO EN

VDD_ON

N_RST

 
Figure 8 Power down/up sequence 
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4  Reference Design Overview 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                              
 
 
 
 
 
 
 
 
 
The figure above shows the reference design we have used for some tool benchmarking and 
measurements. This has a processor interface (typically a processor with ARM core) and a Radio 
interface. The design has two power domains – one is the on_off domain and the other is the 
always_on domain. The always_on domain has a power controller which controls the power 
down and power up sequence for the SoC. The context restore is done thorough save and restore 
in a RETENTION RAM placed in always_on domain. There are no retention cells in the on_off 
domain. 
 

5 Challenges 
We discuss here mainly two challenges here related to the low power design. 

  Clock Gating  
  Power Gating in FPGA 

5.1 Clock Gating  
 
Clock gating is a very common power optimization technique found in ASICs. The clock gating 
can be done at multiple levels. If different procedures are supported by the IP the clock to unused 
proedures can be gated OFF. There could be instances when the clock to complete IP can be 
gated and the IP will be just retaining the states and registers. During this time the entire clock 
can be gated OFF and the synchronization(timings) can be maintained by the timers in the 

MT_IP (ON_OFF DOMAIN) 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

F 

I

N

T

E

R

F

A

C

E 

P

R

O

C

 

I

N

T

E

R

F

A

C

E 

LP Domain (Always ON) 

  

  

  

  

  

SLEEP 

TIMER 

RET 

MEM 
Power 

Controlle

r 

Digital 

Core 1 
Memo

ry 

Digital 

Core 2 
TIMER 

EVENT SCHEDULER 

Figure 9 Reference Design Blocks 



 

SNUG 2014 16 IP Design and Porting using Synopsys Tools 

always ON domain. The timers in the always ON domain will typically use the RTC clock for 
this purpose. 
 
However the clock gating structure is not a good choice for FPGA where dedicated low-skew 
clock lines are used to deliver un-gated clocks to all registers. ASICs will have different clocks 
like gated clocks, generated clocks, generated gated clocks and clock multiplexers.FPGA 
synthesis needs to take care of these combinational logic in clock paths and convert these into 
functionally equivalent FPGA friendly structure.  
 
For the gated clocks, SynplifyPro has the feature “Gated Clock Conversion“ to automate the 
conversion of gated structures in the design. We discuss some common clock structures found in 
ASICs and how SynplifyPro will take care of the same  with „GCC“ option enabled and also 

enabling the master clock. SynplifyPro supports scripting in TCL and also GUI mode through 
SCOPE to enter constratins for the clocks. 
 
All the clock gate structures are not replacable by clock gate conversion. Follwing are the 
conditions to qualify a clock to be identified as a gated clock. 

  The gated clock output can be disabled for some combinations of gating signals. 
  Whenever enabled, the gated clock shall be either equal to the base clock or its inverted 

value. 
 
A common clock gate structure found in ASICs is the glitch-free latch based clock gate strucutre 
which cannot be converted by the Synthesis tool. Alternate option is to replace this strucutre with 
an AND gate and to enable clock conversion by the Synthesis tool. The structure shown below in 
Figure 10 would introduce  a combinational gate in the clock path. This will cause the tool not to 
use the dedicated low skew global lines and will end up in consuming lot of routing resources in 
FPPGA. This will cause skew between the registers and will cause setup and hold violations in 
the system. For avoiding the skew in the clock path we should remove the combinational gates 
from the clock path to the data path. 
 
 

 
Figure 10 Glitch Free latch based clock gate  
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Figure 11 Clock Gate conversion by SynplifyPro 

 
 
The FPGAs generally have register elements with the clock enables. One possible way is to 
modify the RTL and write the code using enables so as to make the synthesis tool to infer the 
clock gates. But the clock gates could be distributed in the design and this could introduce some 
errors. Another possible way is to make the tool do this job by enabling the gated clock 
conversion. Once this is done the gating logic is shifted to the clock enables of the registers and 
this will ensure that both the ungated and gated versions of register elements are clocked by the 
same source and the gating is performed by controlling the clock enables only. 
 
       In Figure 13 there is an illustration of the generated clock being gated. The top portion of the 
figure shows that the master clock is divided by 2 and the divided clock is further gated and 
used. In this case the source and destination register is not clocked by the same master clock. We 
see there is a flop and a gate in the clock path for the destination register. By enabling the gated 
generated clock conversion option in the SynplifyPro tool we can shift the flop and gate to the 
clock enable. 
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Figure 12 Generated Clock Conversion by SynplifyPro 

 
 
 

 
Figure 13 Gated Generated Clock converted by SynplifyPro 
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5.2 Power Gating in FPGA 
Power Gating is an efficient way to reduce power consumption. The key steps in power gating 
are as mentioned below: 

 Identifying the scenarios in the protocol/use case where the power can be gated. 
 Describing the power architecture, the different power domains, and the power sequence. 
 Estimating the threshold above which power saving can be achieved. Power gating for very 

brief intervals may not save significant power but might increase the power consumption 
because of the multiple interactions between the software and hardware which will come 
into picture for the context store and restore and the wakeup sequence. 

 Defining the policies for power save and identifying the sequential elements which need to 
be stored and restored. Some of the register elements need not be stored and restored 
because its value can be re-calculated from the other elements which is stored and 
restored. The retention size is a key factor in power consumption. The retention block is 
going to be in the always ON domain and going to contribute to the leakage power 
consumption. If the retention contents are more it can be distributed to multiple RAMs 
with different supplies. Depending on the retention contents, only the relevant blocks of 
memory which have valid retention data needs to be supplied with power. The time taken 
to enter and exit the power save modes needs to be optimized as much as possible since 
this will maximize the time spent in the low power state and will help in saving power. 

 The SoC wakeup and entry sequence need to be decided. If there are multiple power 
domains the sequence in which the power domains will be shutdown and woken  up need 
to be defined. 

 
The main elements of the “always ON” is the Retention RAM, the timers which use the sleep 
clock and the power sequence controller.  The timers maintain the protocol timings using the low 
frequency clock. The power sequence controller generates the control signals necessary for 
controlling the various power switches, clock gates, isolation cells during the entry to the low 
power state and exit from the power state. Now from the ASIC point of view when one domain 
is SHUT DOWN the outputs going from this domain to always ON domain inputs will cause 
illegal voltages to appear in the always ON domain inputs and can excessive crowbar current. 
Hence these outputs from the power down domain need to be isolated. In FPGA we do not gate 
power but we need to ensure that the always ON domain does not accept or process the inputs 
from power down block once the power controller asserts the isolation enable signal which will 
be used to enable the isolation cells in the case of ASIC. The isolation enables can be used for 
accepting the inputs from the power down block and once the isolation enable is de-asserted the 
inputs are not further accepted from the power down block. Similarly the different voltages 
cannot be modelled in FPGA but in ASIC we have to use the voltage shifters for signals from 
one domain to another. 
Now we cannot emulate the power down condition in FPGA. How do we do that? 
The alternate way of emulating the shutdown is to reset the on_off domain at the time of power 
gating. This is done based on the fact that during power gating, all the registers in the on_off 
domain are lost. The control signal (vdd_off) generated by the power controller when in the 
power down state will be used to control the power switch in the SoC. In FPGA to emulate 
SHUTDOWN we can give this output to the reset control block and reset the on_off domain. 
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Now we de-assert the reset once the wakeup sequence starts (de-assertion of vdd_off).The 
registers to be preserved during power gating are saved to the retention memory in always_on 
domain and restored after power up.  

 

6 Efficient use of Tools 

6.1 RTL Lint 
 
Leda is widely used as the RTL quality checker and many times the usage of this tool happens as 
part of the final checklist execution to make sure that the RTL quality is good. But ideally Leda 
should be used even before starting the design simulations. This will help to find issues early 
enough in the design which otherwise would have taken considerable simulation hours to catch. 
 
The truncation issues , multiple drivers issue which typically can happen when integrating 
modules developed by different persons are best examples which can be fixed in the linting 
process . Few other important issues which were reported by the linting tool were:  
 

 Convergence in cross over path. There was a combinational logic before the synchronizer in 
the CDC path which got introduced during the design implementation.  

 Absence of double flop synchronizer in one CDC path.  
 

6.2 Simulation in VCS 
Simulation offers a perfect debug environment as if offers maximum controllability and 
observability. Turn around time for validating a fix is less. 
 
At some point where the design size increased considerably, we observed that the simulations in 
VCS (2013.06-SP1-2) was taking longer time to complete compared to another simulation tool. 
 
With the help of profiling (using +prof option in command line) – different for different tests – 
will reveal useful information about the simulation of the design. This vcs.prof file has TOP 
LEVEL VIEW and MODULE VIEW which will help us understand the time spent in each 
module as well as the different stages of the simulation. Two state (+2state) simulation is another 
high performance option that can be used where signal values will be restricted to 1 and 0 in 
simulation. This option has to be enabled during compilation and can be applied to a part or the 
full design. 
 
The simulation script that we had used had some legacy simulation switches which caused 
simulation to be slow. Use of the correct switches and also removal of redundant switches is 
highly recommended for speeding up simulation. 
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Figure 14 Simulation Benchmarking in VCS 

 
 

With a very good support from Synopsys technical team we made some changes to our 
simulation script switches and could get results better/at par compared to the V2 Tool. 
This was definitely helpful as we had more Synopsys licenses available. The main changes  
were 
 

 -full64  Enables compilation and simulation in 64-bit mode 

 +evalorder option to evaluate the active events  when limiting the exposure of race 
conditions present in the design.  

 -parallel  Enables parallel compilation and simulation for various applications. 

 +vpd[=NCORES]  Specifies one or more cores for VPD file dumping. You can change the 
number of cores at runtime. 

 -hsopt   improve gate-level and debug simulation speed 

 VCS multicore technology enables parallel verification of a design and its verification 
environment on multicore compute servers.  

 

6.3 Low Power Simulation in VCS with MVSIM 
 
Today’s SoC might have advanced low power techniques such as Power Gating, Retention, 

Low-Vdd Standby, and Dynamic Voltage Scaling (DVS) employ voltage control to enable fine-
grained power management. Comprehensive verification of low power designs requires 
“voltage-level aware“ verification of all the power states, but also of the specified transitions and 
the sequences between power states as the design moves from one operating mode to another. 



 

SNUG 2014 22 IP Design and Porting using Synopsys Tools 

Using MVSIM along with VCS will allow to run low power simulations of the design. In 
addition to the RTL/Netlist and the testbench we use for usual functional simulation, we also 
require a power intent specification of the design in UPF format.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.4 RTL Coverage analysis  
Equally important step in the RTL development is the analysis of the coverage metrics. The VCS 
simulation has to be run in the coverage mode to get the various coverage metrics. There is also 
an option of getting the race conditions in the design from the VCS. This could be helpful to find 
out the possible race conditions in the test bench and design. The DVE tool can be used for 
analysing the various coverage metrics like line, fsm, toggle, and branch. The coverage analysis 
is very helpful to identify any redundant or unreachable code which can be removed. Also it 
helps to identify the areas where tests need to be added. 
 

 
 

6.5 RTL Synthesis – Why SynplifyPro ?? 
One of the key requirements for us was to have the IP ported across different FPGAs. We had 
used SynplifyPro as the synthesis tool and used the respective FPGA tool for routing and bitmap 
generation. The choice of SynplifyPro as the synthesis tool is due to many reasons.  

  A technology independent Synthesis tool was mandatory for the project. Multi-vendor 
support available with SynplifyPro is particularly useful for this requirement. 

  SynplifyPro offers the flexibility to use the vendor specific mapping tools which gives 
better optimized results.  

  Also most of our customers who wanted to port the IP to their own FPGA platforms were 
using Synplify Pro/Premier. 

 
For automating Gated clock conversion in SynplifyPro, we have to enable the “GCC” option 

during synthesis and set the constraint to identify the main clocks in the design. For this the 

Design 
RTL/ 

Netlist 

Testbench Power 
intent 
(UPF) 

VCS NLP (VCS + MVSIM) 

Reports/
Log files 

Reports 
(.vcd, 
.fsdb) 

Figure 15 Low Power Simulation (NLP) - VCS and MVSIM 
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SynplifyPro tool supports TcL scripting as well as a GUI mode called “SCOPE”. This enables 

even the new user to easily convert the gated clocks of his design. 

6.5.1 Tips to reduce the Synthesis Time 

 
The bitmap generation time starts to have an impact on the development schedule once the 
design size becomes larger. A few considerations which can be followed to reduce synthesis time 
are  

 The FPGA should be chosen so that including the debug resources the utilization should not 
be more than 60-70 %. 

 The prototype engineer should have an idea of the final performance requirements of the 
system and should only overconstrain only by 10 %. Initial phase of the development it is 
better to slightly underconstrain so that very less time is taken for bitmap generation. 

 It is better to use incremental synthesis (specify compile points) and place and route option 
so that bitmap generation for small modifications is fast. 

 Also the Fast synthesis option in the Synplify premier can be used if QOR is not a concern. 

6.5.2 FPGA Synthesis challenges of ASIC design 
Special care to be given to the clock tree implementation in FPGA to ensure clock skew 
are not present. 

o Clock source had to be replaced with PLL 
o Clock gate structures to be remapped. 
o In the case of latch free clock gating we need to ensure that the gated clock is 

routed via global routing lines and also need to specify the STA tool. 
 

6.6 Formality 
 

Formality with its easy-to-use, flow-based graphical user interface and auto-setup mode 
enables users  to check if two versions of a design are functionally equivalent. With the 
increasing size and complexity of today’s designs, coupled with the challenges of power, 

timing and area Formality is an inevitale tool that could help in addressing the time to 
market requirements of the design.  Formality Ultra can be used to verify the correctness 
of the ECOs quickly even for  big designs.   
 
There could be multiple ways of implementing the same logic. The difference between 
the two implementations could be in terms of the area taken or in terms of the time taken. 
It will take considerable time to execute the full test suites after any logic optimization. In 
the IP roadmap we have various milestones defined. Each milestone would have 
undergone considerable verification and validation. The next milestone would focus on 
the area optimization without any functionality change. We have efficiently used the logic 
equivalence checking process for saving the time required for verification and validation 
of such optimizations. Also this will be very helpful to validate the various ECO fixes to 
confirm that the functionality is intact.  The formality tool available from Synopsys was 
used for this purpose. 
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7 Results and Possible Improvements 
We have discussed so far some of the challenges in the FPGA prototyping and also some 
challenges specific to a low power design. A strong collaboration with SoC team and the 
prototyping team and an efficient technical support from the EDA tool vendor are the must 
requirements for the successful porting of design into ASIC. We will also mention some 
guidelines that will help for easier porting of the RTL to FPGA.  

7.1 Good practices that helped ASIC to FPGA porting 
It is true that an RTL code targeted to ASIC is not usable as is in FPGA without any 
modifications.  
 

1. Any ASIC/FPGA design will have custom blocks/ports which have to be kept protected 
under a macro which can be enabled during compilation. 

o Clock Gate structures (not FPGA friendly) 
o Memories. 
o SCAN ports (only for ASIC) 
o FPGA Debug Probes (only for FPGA). 
o Embedded LA (only for FPGA). 

2. The design had a well-defined hierarchy (For example the Dig_Top, 
Clk_and_Reset_Top) 

3. Modularize related logic and to register the outputs of the module. This is absolutely 
helpful in the case of memory instances. If all memories are under a single module (For 
example top_mem )if is easy to replace the same. 

4. Having a synchornous design eases timing analysis.  Use of proper constrainsts. 
5. Take advantage by using FPGA specific structures (Block RAMs, BUFGCE/Clk_cntrl 

blocks etc) 
 

7.2 Synthesis results  

Table 3 Synthesis Results 

Synthesis Run Time Around 1 hour 
P & R Run time Around 2 hours 
Utilization Nearly 70% on Altera Stratix 3  
Timing Met 

 

7.3 Power Estimation and Actual Silicon measurement 
We have some results of power estimate done with PrimePower and the corresponding 
measurement in Silicon. The measurements has been accurate with a less than 10% error.  
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For accurate power estimation, 

   Netlist data provided for analysis must accurately represent the design. 
   By annotating parasitics, especially detailed parasitics, very accurate delay and transition 

times can be calculated. These accurate delays and transition times give more accurate 
dynamic power calculations. 

   CCS Cell Library Models provide better accuracy in estimation. 
   Accurate power analysis depends on accurate signal activity. For purely average power 

analysis, the toggle rage data can produce accurate leakage and average power results. If 
gate-level simulation activity data is unavailable, the support for RTL level switching or 
defaults switching activity propagation provides a good estimate of the dynamic power 
and state-dependent leakage. 

7.4 Possible improvements  
 In many cases the SoC designer will have to integrate various IPs from different IP vendors and 
hence IP vendor shall ensure some steps to make easier porting for the design into SoC. 

 Having good documentation/synthesis scripts will help the prototyping team to identify 
challenging areas of the design 

 Start the design targeting for two technologies (SoC and FPGA) 
 It is favourable for the prototyping engineer to be aware of SoC design methodology to 

some extent 
 Follow RTL/Design guidelines strictly 

Low Power requirements are becoming challenging in Today’s ASICs and it becomes important 

to support Power gating prototyping in FPGA. The immediate step in this direction shall be the 
synthesis tool taking care of the automated insertion of power gating related logic by reading the 
power intent. 
 
 

Figure 16  Power Estimate - Prime 
Power vs Silicon measurement 
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