

IP Design - Efficient and Fast Prototyping and Porting to
ASIC using Synopsys Tools.

Thomas Varghese

Prasanth R I

Mindtree Ltd
Bangalore, India

www.mindtree.com

ABSTRACT

The article summarizes our IP design lifecycle and some of the IP design strategies we practice -
describes the various design strategies, optimizations and techniques we have used for keeping a
check on the power consumption challenge and hence achieving industry best numbers in
current consumption. - How Synopsys tools were efficiently used in different phases of the IP
development cycle.

http://www.mindtree.com/

SNUG 2014 2 IP Design and Porting using Synopsys Tools

Table of Contents

1 Introduction .. 4

2 IP Development .. 4
2.1 SOC ARCHITECTURE... 4
2.2 IP AS A BUILDING BLOCK OF A SOC .. 5

2.3 SOC VALIDATION – CHALLENGES ... 6
2.4 IP DEVELOPMENT LIFE CYCLE .. 6

2.4.1 Requirement analysis and planning. ... 7
2.4.2 Design Partitioning ... 7
2.4.3 Reset, clock, Memory, bus interface requirements analysis. 8

2.4.4 Prototyping Platform Development. ... 8
2.4.5 Analysing the Tool and License requirements. ... 9

2.4.6 System Test plan creation and Verification environment creation. 9
2.4.7 FPGA Prototyping .. 9

2.4.8 Low power mode support .. 10
2.4.9 ASIC porting ... 11

3 FPGA Prototyping Flow .. 11
3.1 LOW POWER SUPPORT .. 12

3.1.1 Clock gating .. 13

3.1.2 Dynamic Voltage and Frequency Scaling... 13
3.1.3 Power Gating .. 14

4 Reference Design Overview... 15

5 Challenges .. 15

5.1 CLOCK GATING .. 15
5.2 POWER GATING IN FPGA ... 19

6 Efficient use of Tools ... 20
6.1 RTL LINT ... 20
6.2 SIMULATION IN VCS .. 20
6.3 LOW POWER SIMULATION IN VCS WITH MVSIM .. 21

6.4 RTL COVERAGE ANALYSIS ... 22
6.5 RTL SYNTHESIS – WHY SYNPLIFYPRO ?? .. 22

6.5.1 Tips to reduce the Synthesis Time ... 23
6.5.2 FPGA Synthesis challenges of ASIC design ... 23

6.6 FORMALITY .. 23

7 Results and Possible Improvements ... 24

7.1 GOOD PRACTICES THAT HELPED ASIC TO FPGA PORTING ... 24

7.2 SYNTHESIS RESULTS ... 24
7.3 POWER ESTIMATION AND ACTUAL SILICON MEASUREMENT .. 24
7.4 POSSIBLE IMPROVEMENTS .. 25

8 References .. 26

SNUG 2014 3 IP Design and Porting using Synopsys Tools

Table of Figures

Figure 1 SoC Architecture .. 5

Figure 2 Possible IP components in a SoC ... 6

Figure 3 FPGA Adaptation - Extract from FPMM ... 10

Figure 4 FPGA Prototyping Flow – Reference design ... 11

Figure 5 Power Optimization techniques in ASIC ... 12

Figure 6 Clock Gating ... 13

Figure 7 Dynamic Voltage and Frequency Scaling .. 14

Figure 8 Power down/up sequence ... 14

Figure 9 Reference Design Blocks ... 15

Figure 10 Glitch Free latch based clock gate .. 16

Figure 11 Clock Gate conversion by SynplifyPro .. 17

Figure 12 Generated Clock Conversion by SynplifyPro .. 18

Figure 13 Gated Generated Clock converted by SynplifyPro .. 18

Figure 14 Simulation Benchmarking in VCS ... 21

Figure 15 Low Power Simulation (NLP) - VCS and MVSIM ... 22

Figure 16 Power Estimate - Prime Power vs Silicon measurement ... 25

Table of Tables

Table 1 Low Power Design- UPF Flow vs Non UPF Flow .. 10

Table 2 Synopsys Tool chain .. 11

Table 3 Synthesis Results ... 24

SNUG 2014 4 IP Design and Porting using Synopsys Tools

1 Introduction
Mindtree Short Range Wireless group is a part of the Engineering R&D Service Line which
offers various wireless IPs targeted to ASICs on various technology nodes.

With increased SoC complexities it becomes extremely important that any functional defects are
detected as early as possible. One relatively cheaper and efficient way achieving this is the
FPGA prototyping which also provides a relatively more accurate performance with respect to
the ASIC.

In this paper we highlight the importance of IPs in an SoC, the development cycle of an IP and
advantages of FPGA prototyping for IP validation as well as system validation, good design
practices and steps which will be helpful for any IP development and could be adopted to shorten
the IP development cycle and hence more time for system validation. We take a reference design
and explain how efficiently we can use the Synopsys Tool chain in various stages of the
development lifecycle and how it can make a positive impact on the time to market (TTM) and
the quality of results (QOR).

2 IP Development
Before talking about IPs we shall talk about SoCs where we can get a complete system integrated
on to a single chip. A typical SoC might contain more than one processor core, different storage
memories (ROM, RAM, EEPROM, FLASH), Clock sources (PLLs), Power circuits (Voltage
Regulators, DC-DC level shifters), Peripherals (RTC), External Interfaces (USB, Ethernet,
UART), Analog Interfaces (ADC, DAC) and Embedded Software. Some types of SoCs offer
customizable solutions using specialized, reconfigurable processors.

2.1 SoC Architecture
Complex SoCs with a multitude of supported protocols and communication interfaces are seen
as a common design part even in smartphones now a days. Getting such a complex design into
production has also become more challenging not only because of the stricter time to market
guided by the highly competitive end market but also a higher demand on the non-functional
metrics like power, area and pin count. Underestimation of the complexity of the design will end
up in schedule over-runs and hence will affect success of the product. This will include setting
up realistic plans and deadlines and sufficiently prepared human resources.

SNUG 2014 5 IP Design and Porting using Synopsys Tools

2.2 IP as a building block of a SoC
It becomes a difficult task for the SoC designer to validate the individual IPs in a SoCs. Also
putting more effort on the validation of the non-strategic IP modules inside an SoC may not help
to differentiate your product from the others in the market. The product is going to sell becuase
of its end functionality and is not becauseof having an excellent peripheral.For example if we
take a camera the camera is going to sell because of its ability to take pictures with very fine
details , its performance in the low light conditions and its ability to enhance the image using the
various image processing algorithms.The camera is not going to sell just because of having an
excellent USB or Wi-fi connectivity alone.So it makes complete sense for an SoC designer to put
effort in the integration aspects of the system and on the system validation rather than
concentrating on developing individual IPs from scratch.

This suggests IP usage as a powerful way to speed up the product launch. These IPs can be Soft
IPs (Synthesizable RTL, process independent) or a Hard IPs (synthesized netlist with timing
information, easy to integrate and has predictable performance.) Any IP taken for SoC
integration is expected to have some of the good characteristics like configurability and
availability of a standard interface for easier integration, compliant to good design practices. IP
integration can be easy if complete set of deliverables are provided – RTL, testbenches, synthesis
scripts and documentation.

 SoC

USB 2.0

PCIe

LCD

SATA

SDIO

SPI

UART

SPI/I2C

JTAG

Bluetooth

WiFi

Ethernet

VIDEO
PROCESSOR

AUDIO DSP

Processor
MEMORY

GRAPHICAL
PROCESSOR

Figure 1 SoC Architecture

SNUG 2014 6 IP Design and Porting using Synopsys Tools

2.3 SoC validation – challenges
To better visualize the validation challenge of an SoC we will refer to the below table where the
whole validation cycle is spread across different milestones in 3 or 4 macro stages for the
multiple IPs included in the design.

U
A

R
T

U
SB

P
S2

I2
C

P
C

I

SD
IO

H
D

M
I

JT
A

G
 I/

F

FL
A

SH
 I/

F

Im
ag

e
 s

in
ga

l p
rc

o
e

ss
o

r

V
id

e
o

 p
ro

ce
ss

in
g

G
P

U

M
M

U

D
M

A

Et
h

e
rn

e
t

C
A

N

A
u

d
io

 E
n

c/
D

e
c

A
ES

/3
D

ES

V
IT

ER
B

I D
EC

FE
C

LC
D

SE
N

SO
R

FM LT
E

ZI
G

B
EE

A
N

T

3
G

 M
o

d
e

m

G
P

S

B
lu

e
to

o
th

W
iF

i

SPECIFICATION x

RTL DESIGN x

SIMULATION-based VERIFICATIONx x

FPGA based VERIFICATION x

HW/SW Co-VERIFICATION x

DRIVER DEVELOPMENT x

APPLICATION TESTING x

IC DESIGN x
Figure 2 Possible IP components in a SoC

Today’s SoCs designs are highly complex because of the following factors

 High density circuitry as more features are included but with least impact on size.
 Heterogenous components (often from different vendors) are integrated into the same

SoC.
 Time to market.
 High speed requirement – routing and timing closure.
 Power grid design – multiple voltage domains
 Complex clock tree – a large number of gated, generated clocks.

2.4 IP Development Life cycle

The main steps in an IP development life cycle are,

1. Requirement analysis and understanding.
2. Design Partitioning.
3. Reset, clock, IO and bus interface requirements understanding.
4. Prototyping platform development.
5. Analysing the Tool and License requirements.
6. System Test plan creation.
7. Verification environment creation.
8. FPGA prototyping and signoff.
9. Low power mode support.
10. ASIC porting.

SNUG 2014 7 IP Design and Porting using Synopsys Tools

2.4.1 Requirement analysis and planning.

The input at this stage would be the product specification shared by the end user or it could be a
specification released by a standard body. A feasibility study has to be done for the features
keeping in mind about the TTM and use cases. Also sometimes it makes sense to have a roadmap
illustrating the various milestones and the various features which will go with the associated
milestone. This will help to incorporate any issues in the previous versions to the current
versions and in fact the solution will be more robust and mature by the final version release. This
is widely adopted practice especially after the smart phone revolution we have the smart phone
vendors making their new version release almost in a span of less than six months.

2.4.2 Design Partitioning

This is a very critical step after the requirement freeze. The design has to be partitioned into
software and hardware. We have to see the computation intensive blocks which will benefit from
the parallelism in the hardware. Also time critical blocks or procedures where latency is
unacceptable are other candidates to be implemented in hardware. Parallel computations are best
suited to be put in hardware. Some of the constraints will come from the protocol itself where
protocol dictates the turnaround time for a specific procedure. For example some of the protocols
where we have the frame structure the protocol will give the time available for the frame timing
which includes many signal processing tasks like error coding, FFT ,filtering and CRC. This will
give an idea to take a decision whether the procedure can be jointly implemented in hardware
and software or it has to be completely implemented in hardware. Another important factor
would be the cost factor. The cost of the processor and the hardware should not overshoot the
cost factor for the complete solution. The cost factor would be another decisive parameter to
decide on the partitioning. In one of our system we had implemented the turbo decoder using
multiple DSP processors. We could reduce the number of DSP processors as well as improve the
performance and could get better timing when we moved the turbo decoder to hardware. Other
examples are RF front end of any system which includes lots of filters is best put in hardware. If
the algorithm to be included has lot of context switching and conditional branching it is best
implemented in a processor. Also if you have very less time for prototype development and the
performance is not a matter of concern implementing using a processor is the fastest option.

Another very important aspect would be the throughput requirements and power. These aspects
should be the key pointers used to define the architecture for the system. Both throughput and
power aspect would be driven by the final use case or final ecosystem where the product will be
used. If it is going to be sensor like application throughput may not be a towering requirement
but it will be governed by power consumption. Especially with plethora of wearable devices
nowadays in market power consumption is the governing factor in such cases. Also design
partitioning should not cause frequent interactions between the software and hardware. For
example consider a case where our device needs to send a fixed length packet with a periodic
interval till we get an acknowledgement from the receiver and inform the software (through
interrupt) once this is done. Now one of the best approaches for achieving this with minimal
hardware and firmware interactions will require the following blocks to be put in the hardware

 have a data FIFO in hardware to hold the fixed data to be sent. Software has to program
this only once at the start of the procedure.

SNUG 2014 8 IP Design and Porting using Synopsys Tools

 have a timer in the hardware itself to keep track of the timing interval. Once triggered till
the procedure is stopped the timer shall be running.

 Let the hardware handle the packetisation/depacketisation and error checks during
reception.

2.4.3 Reset, clock, Memory, bus interface requirements analysis.

We have to decide on the type of reset required for the system and the frequency at which the
system will be clocked. Also the memory requirements for the system should be analysed. We
have to decide if we need multiple clocks for the system. To conform to the protocol timings
certain part of the logic or system will have to clock at a higher frequency. Specifying the multi
cycle constraints wherever applicable and using proper handshaking in clock domain crossing
paths is very important.

Also for the low power modes we might have requirement for an RTC clock. Also depending on
the architecture, power and throughput requirements appropriate bus interface has to be chosen
between the hardware and software if your solution comprises of both. If the solution is offered
as hardware IP it is better to give standard and widely used interface as connectivity option.

2.4.4 Prototyping Platform Development.

Appropriate platform has to be selected or developed for prototyping. The prototyping platform
has to be selected based on the final application. Also we should have an initial estimate of the
special resources like the DSP blocks and high speed transceivers required along with the
approximate gate size to choose the FPGA.Recently there is availability of prototyping platforms
which have a SoC FPGA which integrate an ARM core and many peripherals to the FPGA. This
kind of platforms is very ideal for applications which require very high performance. This saves
the board space since both the processor and FPGA is integrated into one. This also saves a lot of
power since the interconnects between the processor and FPGA share the same silicon and hence
the data rate between the FPGA and processor could be very high. Also we have to see the
memory performance provided by the particular prototyping platform. The memory controller
which is required to access the external memory could be shared between the processor and
FPGA. But if the application requires very high performance it might be better to choose a
system which has dedicated memory controller for the processor and FPGA.Appropriate
platform has to be chosen from the available variants which are close to our requirements. Also
we have to pay attention to the vendor roadmap for the prototyping platform in terms of their
plans to support future revisions of processor core, tools etc. The debug mechanisms available
and the tools required for development with the platform are other factors which need key
consideration.

 It is good to develop our own development platform but we need to budget good amount of time
for this activity and have to start this activity well ahead of the IP development. Also there is a
risk of certain components becoming obsolete so it is sensible to make the development platform
in good numbers if we anticipate several versions or enhancements in the product or
specification. Also there are many platforms which have the FPGA with embedded processors
inside it.

SNUG 2014 9 IP Design and Porting using Synopsys Tools

2.4.5 Analysing the Tool and License requirements.

Depending on the tool and component flow chosen we have to ensure that appropriate
development tools and licenses are available.

2.4.6 System Test plan creation and Verification environment creation.

System test plan have to be created for verifying and validating the IP. It has to be decided
whether a directed verification or a high level verification language will be used for verification.
Also System level validation setup has to be defined for the prototype validation. If the IP
consists of hardware and software it is important that the hardware software interface is modelled
in the verification environment similar to the actual interface. The low level interface drivers
used in the verification environment and the software should be exactly the same. If these are
different it will allow many issues to creep through to the validation stage.

2.4.7 FPGA Prototyping

In this stage the design prototype has to be signed off against the test vectors created from the
System Test plan created in the beginning from the requirements. Some cases for some of the
protocols there would be test specification released by the standard body which can be used for
sign off. FPGA prototyping offers a faster and realistic verification strategy. It facilitates the
software development instead of waiting for the actual silicon. Even though FPGA prototyping
offers a “close to final silicon” solution it still differs in some aspect;

 Implementation is different due to different clock tree, reset distribution, power
management, memories and performance.

 Some modules cannot be ported “as is” but has to be replaced / modified with FPGA

friendly structures. One of such component we had was the ADC which needed to be
replaced by equivalent control logic. This ADC module though not a part of the core IP
was still required for a more identical FPGA prototype.

 FPGA prototype represents a limited subset of overall device operational conditions.

One of the limitations with the FPGA prototyping is the limited visibility. The debugging with
external logic analysers requires FPGA I/Os which are generally limited in number. We can
overcome this limitation by using tools like Identify which gives debug visibility almost similar
to RTL simulations.

SNUG 2014 10 IP Design and Porting using Synopsys Tools

2.4.8 Low power mode support

After the normal flow of the prototype is validated we need to focus on the possible power
optimizations. Power optimizations include clock gating, frequency scaling and multi voltage
domains. Power consumption being a differentiating factor for most of the IPs it is a pre-requisite
for most of the IPs to support the various low power modes. So basically the validation of the IP
is not limited to the functionality testing but it should validate the various power modes
combined with the functionality.

It is better to keep the power intent of your design in a separate power intent file (may be UPF
format). There are many advantages of following a UPF flow for your design compared to
having the power description being added in RTL itself. Having a UPF flow will ease porting of
the IP into designs with different power architectures.

Table 1 Low Power Design- UPF Flow vs Non UPF Flow

Feature Non-UPF Flow UPF Flow

RTL content ISO, level shift Automatically inserted

Synthesis create power domain Creating the power intent is the only work

DFT Manual insertion DFT insertion simplified

Equivalence RET flops No specific constraints required

Figure 3 FPGA Adaptation - Extract from FPMM

SNUG 2014 11 IP Design and Porting using Synopsys Tools

2.4.9 ASIC porting

The FPGA design prototype will have to be taken to the SoC flow once prototype testing is
completed. The prototype has to be customized for porting to ASIC. The clock gating
components in FPGA have to be replaced by the appropriate component available in the target
library. Similar is the case with block RAMs used in the design. Also scan chain insertion has to
be performed and it has to be ensured that the RTL and scan inserted netlist are logically
equivalent. To avoid any maintainability related issues it is always better to use the same
database across the FPGA as well as ASIC flow. The usage of appropriate compile time switches
for selecting the FPGA or ASIC flow helped to solve this problem. The SoC specific elements
will be selected will be included if the ASIC flow is selected and corresponding FPGA
equivalents will be included if FPGA flow is chosen.

3 FPGA Prototyping Flow

We have followed the Synopsys tool flow for FPGA prototyping and for the ASIC flow.

Table 2 Synopsys Tool chain

Process Tool used
Lint Leda
Simulation/Coverage VCS (Also Vendor2 simulator)
Logic Equivalence Formality
FPGA Synthesis SynplifyPro (Also XST, Quartus II)
ASIC Synthesis Design Compiler

The below figure illustrates the various steps in FPGA prototyping.

DDeessiiggnn DDaattaabbaassee

 Behavioral
Simulation VCS

RRTTLL LLIINNTT LLEEDDAA

LLooggiiccaall SSyynntthheessiiss ++ MMaappppiinngg

PPllaaccee && RRoouuttee

Synplify

Pro

Project

Design

Constrain

ts

FPGA

vendor

Project

Embedded
LA

FPGA

configuration

file

LLooggiiccaall EEqquuiivvaalleennccee

FFoorrmmaalliittyy

FPGA
adaptation

Figure 4 FPGA Prototyping Flow – Reference design

SNUG 2014 12 IP Design and Porting using Synopsys Tools

The design database which is in verilog RTL is targeted to ASIC. Hence it will have many ASIC
specifc structures like BIST, Test ports, Clock Gates. Many of these are either irrelevant (BIST,
Test ports) for FPGA prototype or are not FPGA friendly (Clock Gates). For the mentioned
reasons the RTL code targeted to ASIC has to be “adapted“ to FPGA before starting the

prototyping. There are several steps that we can do at the time of RTL development to ease this
process which are discussed in sections 6.5.2 FPGA Synthesis challenges of ASIC design and 7.1
Good practices that helped ASIC to FPGA porting . The SynplifyPro project is created with the
FPGA adapted RTL along with the design constraints and the FPGA constraints. The verilog
quartus mapped file generated in the previous step is fed as input to the quartus file along with
the constratints in *.sdc and the Embedded LA information (SignalTap). The FPGA bitmap is
generated after the P&R step by Quartus tool.

3.1 Low Power Support

Power consumption is an increasing challenge in the new designs. An ASIC might contain
several power optimization techniques such as the clock gating which is the most widely used
technique to save dynamic power, Mutli Vt cells to reduce leakage power. However it is now
common to find more drastic power optimization methodologies like Dynamic Voltage
Frequency Scaling (DVFS), Multiple VDD and Power gating. A brief description of these
methods is followed.

Power Management
Dynamic

Voltage scaling

Dynamic

frequency scaling

Multi VDD

Multi VT

Power gating

Clock gating
Retention

Registers

Figure 5 Power Optimization techniques in ASIC

SNUG 2014 13 IP Design and Porting using Synopsys Tools

3.1.1 Clock gating

This is a widely used technique for reducing power consumption. The idea is simple – to turn off
the clock to block/blocks based on a control signal. This control signal can be selected by the
designer (clock gate inserted in RTL) or inferred by the synthesis tool (Automated Clock
Gating). Clock Gating is very efficient as the clock network in a chip can consume 30-50% of
the total dynamic power. It is obvious that gating is more effective (in terms of power saving) if
the Clock Gate cells are placed higher up in the clock tree. Clock gating might look simple but
the effectiveness of the technique depends on the choice of the right control signal for gating.
More number of clock gates does not ensure more power saving but it can also lead to increased
dynamic power consumption. Hence the challenge with clock gating is that a very deep
understanding of the design is required.

Figure 6 Clock Gating

3.1.2 Dynamic Voltage and Frequency Scaling

The DVFS technique takes advantage of the dependence of dynamic power on the Voltage and
Frequency. This is generally used when workload is not CPU bound- In such a case we can
operate the CPU at a scaled down voltage/frequency by providing “just-enough” computation

power. Choosing the frequency can often be back calculated from the work load (number of CPU
clock cycles) and deadline for the task completion. If the voltage is constant, then scaling down
the frequency might not be a good idea, instead “race-to-idle” can be used.

SNUG 2014 14 IP Design and Porting using Synopsys Tools

VDD1 VDD2

FREQ = f1 FREQ = f2 < f1 FREQ = f1

Figure 7 Dynamic Voltage and Frequency Scaling

3.1.3 Power Gating

Gating the power itself is a powerful technique to save power. Again a very good understanding
of the operational modes is required for deciding the power shutdown possibility. A few registers
might need to be implemented using special retention cells. We have to note that certain register
values which can be derived based on other registers need not be part of the retention. A
challenge with the power gating is the wakeup time required for the system to be completely
operational. If we can define appropriate policies when gating will be enabled only specific
values which can have non reset values at the time of gating needs to be part of retention cells.
Some systems may not use retention cells but instead might chose to store and restore the
registers. Before gating, the registers have to be stored to a non-volatile memory and after the
gating is disabled the registers have to be restored with the corresponding register values stored
in the non-volatile memory before enabling the power gating.

Clock

ISO EN

VDD_ON

N_RST

Figure 8 Power down/up sequence

SNUG 2014 15 IP Design and Porting using Synopsys Tools

4 Reference Design Overview

The figure above shows the reference design we have used for some tool benchmarking and
measurements. This has a processor interface (typically a processor with ARM core) and a Radio
interface. The design has two power domains – one is the on_off domain and the other is the
always_on domain. The always_on domain has a power controller which controls the power
down and power up sequence for the SoC. The context restore is done thorough save and restore
in a RETENTION RAM placed in always_on domain. There are no retention cells in the on_off
domain.

5 Challenges
We discuss here mainly two challenges here related to the low power design.

 Clock Gating
 Power Gating in FPGA

5.1 Clock Gating

Clock gating is a very common power optimization technique found in ASICs. The clock gating
can be done at multiple levels. If different procedures are supported by the IP the clock to unused
proedures can be gated OFF. There could be instances when the clock to complete IP can be
gated and the IP will be just retaining the states and registers. During this time the entire clock
can be gated OFF and the synchronization(timings) can be maintained by the timers in the

MT_IP (ON_OFF DOMAIN)

R

F

I

N

T

E

R

F

A

C

E

P

R

O

C

I

N

T

E

R

F

A

C

E

LP Domain (Always ON)

SLEEP

TIMER

RET

MEM
Power

Controlle

r

Digital

Core 1
Memo

ry

Digital

Core 2
TIMER

EVENT SCHEDULER

Figure 9 Reference Design Blocks

SNUG 2014 16 IP Design and Porting using Synopsys Tools

always ON domain. The timers in the always ON domain will typically use the RTC clock for
this purpose.

However the clock gating structure is not a good choice for FPGA where dedicated low-skew
clock lines are used to deliver un-gated clocks to all registers. ASICs will have different clocks
like gated clocks, generated clocks, generated gated clocks and clock multiplexers.FPGA
synthesis needs to take care of these combinational logic in clock paths and convert these into
functionally equivalent FPGA friendly structure.

For the gated clocks, SynplifyPro has the feature “Gated Clock Conversion“ to automate the
conversion of gated structures in the design. We discuss some common clock structures found in
ASICs and how SynplifyPro will take care of the same with „GCC“ option enabled and also

enabling the master clock. SynplifyPro supports scripting in TCL and also GUI mode through
SCOPE to enter constratins for the clocks.

All the clock gate structures are not replacable by clock gate conversion. Follwing are the
conditions to qualify a clock to be identified as a gated clock.

 The gated clock output can be disabled for some combinations of gating signals.
 Whenever enabled, the gated clock shall be either equal to the base clock or its inverted

value.

A common clock gate structure found in ASICs is the glitch-free latch based clock gate strucutre
which cannot be converted by the Synthesis tool. Alternate option is to replace this strucutre with
an AND gate and to enable clock conversion by the Synthesis tool. The structure shown below in
Figure 10 would introduce a combinational gate in the clock path. This will cause the tool not to
use the dedicated low skew global lines and will end up in consuming lot of routing resources in
FPPGA. This will cause skew between the registers and will cause setup and hold violations in
the system. For avoiding the skew in the clock path we should remove the combinational gates
from the clock path to the data path.

Figure 10 Glitch Free latch based clock gate

SNUG 2014 17 IP Design and Porting using Synopsys Tools

Figure 11 Clock Gate conversion by SynplifyPro

The FPGAs generally have register elements with the clock enables. One possible way is to
modify the RTL and write the code using enables so as to make the synthesis tool to infer the
clock gates. But the clock gates could be distributed in the design and this could introduce some
errors. Another possible way is to make the tool do this job by enabling the gated clock
conversion. Once this is done the gating logic is shifted to the clock enables of the registers and
this will ensure that both the ungated and gated versions of register elements are clocked by the
same source and the gating is performed by controlling the clock enables only.

 In Figure 13 there is an illustration of the generated clock being gated. The top portion of the
figure shows that the master clock is divided by 2 and the divided clock is further gated and
used. In this case the source and destination register is not clocked by the same master clock. We
see there is a flop and a gate in the clock path for the destination register. By enabling the gated
generated clock conversion option in the SynplifyPro tool we can shift the flop and gate to the
clock enable.

SNUG 2014 18 IP Design and Porting using Synopsys Tools

Figure 12 Generated Clock Conversion by SynplifyPro

Figure 13 Gated Generated Clock converted by SynplifyPro

SNUG 2014 19 IP Design and Porting using Synopsys Tools

5.2 Power Gating in FPGA
Power Gating is an efficient way to reduce power consumption. The key steps in power gating
are as mentioned below:

 Identifying the scenarios in the protocol/use case where the power can be gated.
 Describing the power architecture, the different power domains, and the power sequence.
 Estimating the threshold above which power saving can be achieved. Power gating for very

brief intervals may not save significant power but might increase the power consumption
because of the multiple interactions between the software and hardware which will come
into picture for the context store and restore and the wakeup sequence.

 Defining the policies for power save and identifying the sequential elements which need to
be stored and restored. Some of the register elements need not be stored and restored
because its value can be re-calculated from the other elements which is stored and
restored. The retention size is a key factor in power consumption. The retention block is
going to be in the always ON domain and going to contribute to the leakage power
consumption. If the retention contents are more it can be distributed to multiple RAMs
with different supplies. Depending on the retention contents, only the relevant blocks of
memory which have valid retention data needs to be supplied with power. The time taken
to enter and exit the power save modes needs to be optimized as much as possible since
this will maximize the time spent in the low power state and will help in saving power.

 The SoC wakeup and entry sequence need to be decided. If there are multiple power
domains the sequence in which the power domains will be shutdown and woken up need
to be defined.

The main elements of the “always ON” is the Retention RAM, the timers which use the sleep
clock and the power sequence controller. The timers maintain the protocol timings using the low
frequency clock. The power sequence controller generates the control signals necessary for
controlling the various power switches, clock gates, isolation cells during the entry to the low
power state and exit from the power state. Now from the ASIC point of view when one domain
is SHUT DOWN the outputs going from this domain to always ON domain inputs will cause
illegal voltages to appear in the always ON domain inputs and can excessive crowbar current.
Hence these outputs from the power down domain need to be isolated. In FPGA we do not gate
power but we need to ensure that the always ON domain does not accept or process the inputs
from power down block once the power controller asserts the isolation enable signal which will
be used to enable the isolation cells in the case of ASIC. The isolation enables can be used for
accepting the inputs from the power down block and once the isolation enable is de-asserted the
inputs are not further accepted from the power down block. Similarly the different voltages
cannot be modelled in FPGA but in ASIC we have to use the voltage shifters for signals from
one domain to another.
Now we cannot emulate the power down condition in FPGA. How do we do that?
The alternate way of emulating the shutdown is to reset the on_off domain at the time of power
gating. This is done based on the fact that during power gating, all the registers in the on_off
domain are lost. The control signal (vdd_off) generated by the power controller when in the
power down state will be used to control the power switch in the SoC. In FPGA to emulate
SHUTDOWN we can give this output to the reset control block and reset the on_off domain.

SNUG 2014 20 IP Design and Porting using Synopsys Tools

Now we de-assert the reset once the wakeup sequence starts (de-assertion of vdd_off).The
registers to be preserved during power gating are saved to the retention memory in always_on
domain and restored after power up.

6 Efficient use of Tools

6.1 RTL Lint

Leda is widely used as the RTL quality checker and many times the usage of this tool happens as
part of the final checklist execution to make sure that the RTL quality is good. But ideally Leda
should be used even before starting the design simulations. This will help to find issues early
enough in the design which otherwise would have taken considerable simulation hours to catch.

The truncation issues , multiple drivers issue which typically can happen when integrating
modules developed by different persons are best examples which can be fixed in the linting
process . Few other important issues which were reported by the linting tool were:

 Convergence in cross over path. There was a combinational logic before the synchronizer in
the CDC path which got introduced during the design implementation.

 Absence of double flop synchronizer in one CDC path.

6.2 Simulation in VCS
Simulation offers a perfect debug environment as if offers maximum controllability and
observability. Turn around time for validating a fix is less.

At some point where the design size increased considerably, we observed that the simulations in
VCS (2013.06-SP1-2) was taking longer time to complete compared to another simulation tool.

With the help of profiling (using +prof option in command line) – different for different tests –
will reveal useful information about the simulation of the design. This vcs.prof file has TOP
LEVEL VIEW and MODULE VIEW which will help us understand the time spent in each
module as well as the different stages of the simulation. Two state (+2state) simulation is another
high performance option that can be used where signal values will be restricted to 1 and 0 in
simulation. This option has to be enabled during compilation and can be applied to a part or the
full design.

The simulation script that we had used had some legacy simulation switches which caused
simulation to be slow. Use of the correct switches and also removal of redundant switches is
highly recommended for speeding up simulation.

SNUG 2014 21 IP Design and Porting using Synopsys Tools

Figure 14 Simulation Benchmarking in VCS

With a very good support from Synopsys technical team we made some changes to our
simulation script switches and could get results better/at par compared to the V2 Tool.
This was definitely helpful as we had more Synopsys licenses available. The main changes
were

 -full64 Enables compilation and simulation in 64-bit mode

 +evalorder option to evaluate the active events when limiting the exposure of race
conditions present in the design.

 -parallel Enables parallel compilation and simulation for various applications.

 +vpd[=NCORES] Specifies one or more cores for VPD file dumping. You can change the
number of cores at runtime.

 -hsopt improve gate-level and debug simulation speed

 VCS multicore technology enables parallel verification of a design and its verification
environment on multicore compute servers.

6.3 Low Power Simulation in VCS with MVSIM

Today’s SoC might have advanced low power techniques such as Power Gating, Retention,

Low-Vdd Standby, and Dynamic Voltage Scaling (DVS) employ voltage control to enable fine-
grained power management. Comprehensive verification of low power designs requires
“voltage-level aware“ verification of all the power states, but also of the specified transitions and
the sequences between power states as the design moves from one operating mode to another.

SNUG 2014 22 IP Design and Porting using Synopsys Tools

Using MVSIM along with VCS will allow to run low power simulations of the design. In
addition to the RTL/Netlist and the testbench we use for usual functional simulation, we also
require a power intent specification of the design in UPF format.

6.4 RTL Coverage analysis
Equally important step in the RTL development is the analysis of the coverage metrics. The VCS
simulation has to be run in the coverage mode to get the various coverage metrics. There is also
an option of getting the race conditions in the design from the VCS. This could be helpful to find
out the possible race conditions in the test bench and design. The DVE tool can be used for
analysing the various coverage metrics like line, fsm, toggle, and branch. The coverage analysis
is very helpful to identify any redundant or unreachable code which can be removed. Also it
helps to identify the areas where tests need to be added.

6.5 RTL Synthesis – Why SynplifyPro ??
One of the key requirements for us was to have the IP ported across different FPGAs. We had
used SynplifyPro as the synthesis tool and used the respective FPGA tool for routing and bitmap
generation. The choice of SynplifyPro as the synthesis tool is due to many reasons.

 A technology independent Synthesis tool was mandatory for the project. Multi-vendor
support available with SynplifyPro is particularly useful for this requirement.

 SynplifyPro offers the flexibility to use the vendor specific mapping tools which gives
better optimized results.

 Also most of our customers who wanted to port the IP to their own FPGA platforms were
using Synplify Pro/Premier.

For automating Gated clock conversion in SynplifyPro, we have to enable the “GCC” option

during synthesis and set the constraint to identify the main clocks in the design. For this the

Design
RTL/

Netlist

Testbench Power
intent
(UPF)

VCS NLP (VCS + MVSIM)

Reports/
Log files

Reports
(.vcd,
.fsdb)

Figure 15 Low Power Simulation (NLP) - VCS and MVSIM

SNUG 2014 23 IP Design and Porting using Synopsys Tools

SynplifyPro tool supports TcL scripting as well as a GUI mode called “SCOPE”. This enables

even the new user to easily convert the gated clocks of his design.

6.5.1 Tips to reduce the Synthesis Time

The bitmap generation time starts to have an impact on the development schedule once the
design size becomes larger. A few considerations which can be followed to reduce synthesis time
are

 The FPGA should be chosen so that including the debug resources the utilization should not
be more than 60-70 %.

 The prototype engineer should have an idea of the final performance requirements of the
system and should only overconstrain only by 10 %. Initial phase of the development it is
better to slightly underconstrain so that very less time is taken for bitmap generation.

 It is better to use incremental synthesis (specify compile points) and place and route option
so that bitmap generation for small modifications is fast.

 Also the Fast synthesis option in the Synplify premier can be used if QOR is not a concern.

6.5.2 FPGA Synthesis challenges of ASIC design
Special care to be given to the clock tree implementation in FPGA to ensure clock skew
are not present.

o Clock source had to be replaced with PLL
o Clock gate structures to be remapped.
o In the case of latch free clock gating we need to ensure that the gated clock is

routed via global routing lines and also need to specify the STA tool.

6.6 Formality

Formality with its easy-to-use, flow-based graphical user interface and auto-setup mode
enables users to check if two versions of a design are functionally equivalent. With the
increasing size and complexity of today’s designs, coupled with the challenges of power,

timing and area Formality is an inevitale tool that could help in addressing the time to
market requirements of the design. Formality Ultra can be used to verify the correctness
of the ECOs quickly even for big designs.

There could be multiple ways of implementing the same logic. The difference between
the two implementations could be in terms of the area taken or in terms of the time taken.
It will take considerable time to execute the full test suites after any logic optimization. In
the IP roadmap we have various milestones defined. Each milestone would have
undergone considerable verification and validation. The next milestone would focus on
the area optimization without any functionality change. We have efficiently used the logic
equivalence checking process for saving the time required for verification and validation
of such optimizations. Also this will be very helpful to validate the various ECO fixes to
confirm that the functionality is intact. The formality tool available from Synopsys was
used for this purpose.

SNUG 2014 24 IP Design and Porting using Synopsys Tools

7 Results and Possible Improvements
We have discussed so far some of the challenges in the FPGA prototyping and also some
challenges specific to a low power design. A strong collaboration with SoC team and the
prototyping team and an efficient technical support from the EDA tool vendor are the must
requirements for the successful porting of design into ASIC. We will also mention some
guidelines that will help for easier porting of the RTL to FPGA.

7.1 Good practices that helped ASIC to FPGA porting
It is true that an RTL code targeted to ASIC is not usable as is in FPGA without any
modifications.

1. Any ASIC/FPGA design will have custom blocks/ports which have to be kept protected
under a macro which can be enabled during compilation.

o Clock Gate structures (not FPGA friendly)
o Memories.
o SCAN ports (only for ASIC)
o FPGA Debug Probes (only for FPGA).
o Embedded LA (only for FPGA).

2. The design had a well-defined hierarchy (For example the Dig_Top,
Clk_and_Reset_Top)

3. Modularize related logic and to register the outputs of the module. This is absolutely
helpful in the case of memory instances. If all memories are under a single module (For
example top_mem)if is easy to replace the same.

4. Having a synchornous design eases timing analysis. Use of proper constrainsts.
5. Take advantage by using FPGA specific structures (Block RAMs, BUFGCE/Clk_cntrl

blocks etc)

7.2 Synthesis results

Table 3 Synthesis Results

Synthesis Run Time Around 1 hour
P & R Run time Around 2 hours
Utilization Nearly 70% on Altera Stratix 3
Timing Met

7.3 Power Estimation and Actual Silicon measurement
We have some results of power estimate done with PrimePower and the corresponding
measurement in Silicon. The measurements has been accurate with a less than 10% error.

SNUG 2014 25 IP Design and Porting using Synopsys Tools

For accurate power estimation,

 Netlist data provided for analysis must accurately represent the design.
 By annotating parasitics, especially detailed parasitics, very accurate delay and transition

times can be calculated. These accurate delays and transition times give more accurate
dynamic power calculations.

 CCS Cell Library Models provide better accuracy in estimation.
 Accurate power analysis depends on accurate signal activity. For purely average power

analysis, the toggle rage data can produce accurate leakage and average power results. If
gate-level simulation activity data is unavailable, the support for RTL level switching or
defaults switching activity propagation provides a good estimate of the dynamic power
and state-dependent leakage.

7.4 Possible improvements
 In many cases the SoC designer will have to integrate various IPs from different IP vendors and
hence IP vendor shall ensure some steps to make easier porting for the design into SoC.

 Having good documentation/synthesis scripts will help the prototyping team to identify
challenging areas of the design

 Start the design targeting for two technologies (SoC and FPGA)
 It is favourable for the prototyping engineer to be aware of SoC design methodology to

some extent
 Follow RTL/Design guidelines strictly

Low Power requirements are becoming challenging in Today’s ASICs and it becomes important

to support Power gating prototyping in FPGA. The immediate step in this direction shall be the
synthesis tool taking care of the automated insertion of power gating related logic by reading the
power intent.

Figure 16 Power Estimate - Prime
Power vs Silicon measurement

SNUG 2014 26 IP Design and Porting using Synopsys Tools

8 References

 FPGA-Based Prototyping Methodology Manual.

 Low Power Methodology Manual

