
Enabling predictive analysis in
service oriented BPM solutions.

WHITE PAPER

White paper

Contents
Relevance of CEP solutions in a service oriented BPM

CEP and SOA – how are they related?

CEP in action

CEP platforms –market status

03

03

05

06

02

Summary
Complex Event Processing (CEP) is a real time event analysis, correlation and processing mechanism that fits in

seamlessly with service oriented Business Process Management (BPM) solutions. Conceived in the early 1990s by

Dr. David Luckham of Stanford University, CEP uses technology to predict high-level events likely to result from specific

sets of low-level factors. CEP identifies and analyzes cause and effect relationships among real time events and

allows personnel to take proactive, effective actions in response to specific scenarios. CEP is used in security policy

development, risk management, Customer Relationship Management (CRM), application servers and middleware.

One important aspect of CEP is Business Activity Monitoring (BAM). BAM is the use of technology to proactively define

and analyze the most critical opportunities and risks in an enterprise. CEP is especially effective in situations where

numerous factors interact in variable ways, such as investment and lending environments for financial institutions. CEP

can also be used in threat management for communications networks.

It is evident that CEP is a technology for low-latency filtering, correlating, aggregating and computing real-world event

data. The processing of messages as they arrive is called “real time processing” and the use of a sophisticated and

optimized storage mechanism is called “historical processing”. A good event processing platform is judged by how well it

integrates real-time and historical processing.

White paper 03

Relevance of CEP solutions in a service
oriented BPM

CEP solutions are relevant in the following service oriented

BPM implementations:

Organizations where processes change frequently.

Here, event-driven dynamic process models, which are

typically rule or plan driven, can be used. Changes can

be done at rule levels so the core process model remains

untouched and rework is reduced. Eg., TIBCO’s CEP

offering Business Events uses rules and state models to

define event processing, as well as managed decisions.

Automating / monitoring processes across the value chain.

Though monitoring capabilities may be built-in at the

BPM level, the customer may want to monitor processes

against external metrics (like SOA services, external

events, etc). That’s a role for CEP.

Eg., TIBCO Business Events can model a value chain

as a state model, and correlate events in various

ways to support business activity monitoring – including

monitoring BPM.

Supporting cross-functional processes.

In an enterprise BPM implementation, CEP tools

can define and utilize the appropriate meta-model

as concepts, and enjoy full flexibility in how it interacts

with events, rules and decisions.

Monitoring the status of work in progress.

CEP allows long-running stateful processes – self

monitoring processes come as a basic feature. Eg., many

CEP products can continuously question the attributes

of entities they are processing and deliver results as

events change.

Extending the life of legacy apps.

BPM can layer on existing applications and services. The

same is true for CEP, which can invoke and control existing

applications as well.

Improving inaccurate, inconsistent or laborious

manual work.

CEP is mostly about automated processes or monitoring

events from manual processes.

Eg., one can implement a state model for workflow

queue handling in TI BCO Business Events, but most people

prefer to use the out-of-the-box variant from a BPM tool.

CEP and SOA – how are they related?
Connecting services in a typical SOA environment

occurs in a linear and predictable sequence. Event

driven architecture on the other hand, allows multiple,

unpredictable, asynchronous events to happen in parallel

and trigger a single action. An event processing system

senses and collects these events and correlates patterns

which are disseminated to all interested parties (human

or automated) optionally via services. The interested

stakeholders evaluate the events and may respond by

invoking a service, triggering a business process, or

publishing or syndicating further information. Event Driven

Architecture (EDA) helps correlate complex relationships of

events based on past trends and future predictions. While

EDA is often considered a subset of SOA, it is being widely

acknowledged as complementary to SOA.

Complex Event Processing (CEP) is an emerging

technology that will help companies develop and manage

Business Activity Monitoring (BAM), enterprise application

integration, network and systems security and business

processes. With SOA and CEP, organizations can develop

model-driven, agile “sense and respond” systems that

can detect events of business value and trigger services

to manage the min near real-time. Understanding which

applications are optimized for which architecture and

how they interface with each other allows for improved

architecture. Such an architectural approach enables

end-to-end management of business processes and

supported functions.

The operational stack supports a distributed architecture.

In this the activities of client applications and partner

services, both within the organization and outside, are

coordinated by orchestration processes. Clients and

partners communicate with these processes through the

ESB. Internal connections typically use MOM queues to

access the bus; external connections use SOAP over HTTP.

The orchestration processes, besides coordinating partner

activities, also interface with backend systems (databases,

mainframes, and so on) and use BPM to delegate manual

work to human actors.

White paper 04

CEP Cache engine Transactional database

Communication
mechanism

Business
services

Component
services

Service
directory

Message routing

Error handling

Mediation

Content
transformation

Metadata
managment

Logging

Event
management

Sync / Async
messaging

Messaging

Auditing

Channels (JMS)

Customer APPS 1 Operational APPS Customer APPS 2 Shared APPS

System components

Distributed cache

SOA platform

CEP consists of a set of rules that listen for events from the

bus. A publish-subscribe messaging infrastructure allows

CEP to get these events without disrupting operational

processes. CEP rules, as we discussed above, infer complex

events from these operational events. They send complex

events back on the bus on orchestration queues, where

they are picked up and handled by CEP-aware orchestration

processes (see figure).

CEP must be sufficiently scalable to handle the high volume

of events on the bus. There is more to this than its sheer

processing speed. CEP, like most rule-based systems, is

stateful. It keeps its state (i.e., its current set of asserted

facts) in a data store called the working memory.

BAM works differently from CEP. Orchestration and

BPM processes have state and BAM uses this, combined

with business data from backend systems, to present

a consolidated view of the state of the processes.

Example, rather than tracking just order processes, BAM

might also track the orders themselves, as they appear

in the backend order system. In the previous figure, we

labelled this piece BAM / BI (for Business Intelligence),

because most BAM implementations by themselves lack the

ability to incorporate application data. Combining process

state with application data often requires the combination

of BAM and some sort of BI or analytics tool.

Whereas BAM merely presents a view of the system, CEP, by

creating events that it has inferred from its observations,

serves as an active participant. SOA platforms with CEP are

self-healing; CEP watches what’s happening operationally

and warns when it detects a significant occurrence.

The dotted line in the previous figure from CEP to BAM

suggests that complex events created by CEP could be

incorporated into the BAM dashboard. Thus, the BAM

dashboard for the trading application could show statistics

on completed orders or buy-aheads per broker. The

mechanism by which CEP notifies BAM of complex events

is implementation-specific.

The following figure illustrates this architecture:

White paper

What CEP and SOA have in common are events. Both

technologies use events, but for different purposes.

SOA processes use events to drive control flow. An SOA

process is started by an event and during the course of

its execution waits for further events to propel it forward.

Events in SOA, in effect, force process transitions. Most SOA

processes not only receive but also send events. When

a process sends an event, another process receives it.

Elaborate choreographies arise when the processes of

multipleorganizations engage in conversations of events.

CEP in action
Example 1:

There are different design choices in an SOA, even

when services are already identified. The following example

illustrates this:

To cash the process of supply chain management, one starts

with placing an order. Take two services: order service and

inventory service. The task is to place the order and make a

corresponding reservation for the stock level. In this context

let us explore few design options (A, B, C):

A. 1. The “process / application” sends a message

 (sync or async) to “placeOrder” on the order service.

 2. The “process / application” sends another

 message (sync or async) to “blockStock” on the

 inventory service.

B. 1. The “process / application” sends a message

 (sync or async) to “placeOrder” on the order service.

 2. The order service sends a message (sync or async)

 to “blockStock” on the inventory service.

C. 1. The “process / application” sends a message

 (sync or async) to “placeOrder” on the order service.

 2. The order service publishes an “orderReceived” event.

 3. The inventory service subscribes to the

 “orderReceived” event.

The same context above can be viewed in the light of a

business service. Three business services related to this

are: sales, inventory and shipping.

�� Many applications and people operate in sales,

including the person and the application that was used

to submit the order. When an order is submitted, it goes

through all the internal validations and sales raises an

Order Tentatively Accepted event

�� Inventory, which is subscribed to this event, checks if it

has everything in stock for the order. For every item in

stock, it allocates that stock to the order and publishes

the Inventory Allocated To Order event for it. For items /

quantities not in stock, it starts a long running process

which watches for inventory changes

�� When an Inventory Changed event occurs, it

matches that against orders requiring allocation –

if it finds one that requires stock, it publishes the

Inventory Allocated To Order event

�� Sales is subscribed to the Inventory Allocated To

Order event. On receiving any event pertaining

to the order tentatively accepted, it publishes an Order

Accepted event

�� When inventory receives the Order Accepted event, it

generates the pick list to bring all the stock from the

warehouses to the loading docks, finally publishing

 the Pick List Generated event containing target docks

�� When shipping receives the Pick List Generated

event, it starts the yard management necessary to bring

the trucks needed to the docks

Example 2:

In stock trading, a customer’s purchase of shares is the

combination of four events:

1.	 A request to the broker to buy the shares

2.	 The broker’s placement of the order

3.	 The result of the order, including the price at which the

shares were bought

4.	 The broker’s response back to the customer

When CEP detects these four events, it publishes a complex

event – let’s call it Buy Order Completed – back to the

bus, where interested listeners may pick it up. The figure in

following page illustrates the sequence of steps:

05

White paper

Customer

ESB

Broker buy

request

Submit buy

order

Get buy order

responce
EndSend request

CEP rule

If 1 causes 2 and 2 causes 3 and 3 causes 4 then

generate buy order completed event

The market

1, 2, 3, 4 (in any order)

Buy order completed

Brocker SOA process

1 2
3

4

CEP can also detect breakdowns in the buy order.

For example, if the broker fails to respond to the

customer in time, CEP easily spots this and publishes

a Buy Order Broker Response Late event. CEP also spot

anomalies that span multiple orders. For example, it can

detect suspicious broker activities like a buy-ahead, in

which the broker, when directed by a customer to buy

shares, buys his own lot of shares first and sells them after

placing the customer’s order. It would be difficult to build a

detection mechanism for buy-aheads into SOA processes;

CEP, as a watchdog off to the side, is much better equipped.

This trade monitoring example is one of many CEP used

cases. CEP used cases arise naturally from SOA used cases.

If events move through the bus to drive services and

processes, there is bound to be some important business

reason to infer complex events from them. Indeed, many

CEP used cases require SOA. Fraud detection, for example,

which checks for anomalies in transactions on an account,

must reside on an SOA platform with processes in place to

perform transactions on accounts. The fraud detection rules

must understand the structure of the account events and

the protocol governing how they are exchanged.

As it is evident from these examples, many business

domains services are invoking / subscribing to events,

which are a combination of SOA and CEP. CEP listens on the

SOA bus for the same events that pass in and out of SOA

processes, but – unlike SOA – is concerned mainly with

the detection of patterns that emerge across events. It

does this by applying event-pattern matching rules to the

events. CEP thus relies on both SOA’s event bus and its

rules engine.

CEP platforms –market status
IInitially the most established commercial

implementations came from small vendors, such as

Coral8 and Streambase. But within the past few years

 the major SOA vendors have started to incorporate CEP

into their stacks. IBM acquired Coral8 and came up with

a CEP offering. TIBCO aggressively sells its CEP tool,

Business Events in its SOA and BPM deals. Oracle, thanks

to its BEA acquisition, offers a product called “Oracle” CEP.

The combined SOA / CEP offering is encouraging, because

CEP’s value does not lie solely in itself, but from its

contribution to an overall solution. SOA vendors, in a

sense, have been in the “overall solution” business

for years. They promote the idea that business

architecture should be built on services. They also provide

a platform on which to build those services. But what’s

always been missing is a tool to watch the services, to

make sense of what’s happening operationally.

The figure that follows shows a typical CEP stack offered

by major SOA vendors.

06

White paper

Channel

manager

Working

memory

Agenda
Execution

engine

Object manager

Object store

(Transactional

database)

Pattern

matcher

Rule base

Order of
rules firing

Collection of rules
in byte code

Event objects

Evaluation of
rules against
event data

The channel manager manages all channels on which real

time events are received from business systems. Rule base

is a collection of dynamic rules that the CEP engine

effectively uses for decision making. A decision tree based

on industry standard algorithms like RETE is utilized to

build and process hierarchical rules. SOA based processes

running on the orchestration engine can send uncorrelated

and unanalyzed events received via its partner systems

to the CEP engine which can process and send correlated,

analysed and contextual responses back.

CEP and Business Activity Monitoring (BAM) are not a part

of the core operational SOA platform, but rather provide

an important business monitoring capability. BAM, in

most implementations, is a summary the view of business

processes in the system. Like CEP, it observes the progress

of operational processes, though it handles this data

somewhat differently. BAM’s purpose is to create a rolled

up, read-only data view. CEP, on the other hand, tries to

infer complex events that can trigger follow-on actions.

Both the CEP and the BAM funnel have a large volume of

events from the operational stack, reducing all that chatter

to a smaller set.

The following table maps this stack to the four major SOA

vendors: IBM, Oracle, TIBCO and Microsoft.

Vendor BPM Orchestration ESB CEP

TIBCO iProcess / Active

Matrix BPM

Business Works Active Matrix

Service Grid / Bus

Business Events

Oracle Oracle BPM BPEL Process

Manager

Oracle Service Bus Oracle CEP

IBM Websphere Process

Server, FileNet

Websphere Process

Server, Websphere

Interchange Server

Websphere

Enterprise Service

Bus, Websphere

Message Broker

Websphere

BusinessEvents

Microsoft Sharepoint BPM Biztalk Server Biztalk ESB Microsoft CEP

07

Typical CEP stack offered by major SOA vendors.

White paper 08

