
The Magazine for Agile Developers and Agile Testers

© iStockphoto.com/ThomasVogel

January 2011

issue 5www.agilerecord.com	 	free	digital	version	 	made	in	Germany	 ISSN	2191-1320



60 www.agilerecord.com

In	the	programming	world,	 the	term	‘bad	smell’	 refers	to	nega-
tive	characteristics	of	code	 that	could	adversely	 impact	design	
and	 code	quality.	Refactoring	 is	 a	disciplined	 technique	 for	 re-
structuring	an	existing	body	of	 code,	altering	 its	 internal	 struc-
ture	without	changing	its	external	behavior.	Its	heart	is	a	series	of	
small	behavior	preserving	transformations.	Refactoring	improves	
the	quality	 of	 design	and	 code.	 In	a	broader	 context,	 software	
development	and	testing	life	cycles	do	signal	bad	smells	or	ne-
gative	characteristics	from	time	to	time,	and	from	project	to	pro-
ject.	Recognizing	such	bad	smells	and	responding	to	them	at	the	
right	time	is	essential	to	keeping	projects	on	track.	In	our	expe-
rience,	Distributed	Agile	Software	Development	projects	involve	
many	nuances	that	could	result	 in	tricky	situations	that	 impact	
the	 satisfaction	 levels	 of	 stakeholders.	Refactoring	of	 life-cycle	
processes	is	necessary	to	tune	the	delivery	engine	towards	deli-
vering	quality	products.	This	is	not	a	one-time	activity.	It	needs	to	
happen	continuously	at	regular	intervals,	and	the	way	it	is	done	
can	differ	from	project	to	project.

Risks and Bad Smells
Risks	are	uncertainties	that	could	affect	project	performance	ad-
versely.	For	example,	a	risk	could	impact	project	costs	(because	
of	slipping	schedules	or	effort	variance)	or	affect	the	quality	of	
deliverables	 and	 reduce	 customer	 satisfaction.	 In	 most	 cases	
risks	 are	 identified	 before	 they	 occur.	 On	 the	 other	 hand,	 bad	
smells	are	 felt	or	experienced	 in	 real-time.	They	are	an	 indica-
tion	of	project	risks	or	greater	probability	of	producing	mediocre	
results.	Mediocre	results	attributed	to	average	quality	gradually	
become	an	unexpected	bottleneck	during	the	product	life	cycle.	
For	 instance,	mediocre	results	could	 impact	a	business	critical	
situation	related	to	product	release	or	migration.	This	can	be	avo-
ided	if	we	recognize	and	fine-tune	the	corresponding	processes	
and	also	apply	corrective	actions.	Any	causative	process	that	re-
lates	to	a	bad	smell	 is	a	candidate	for	refactoring.	Recognizing	
and	 responding	 to	bad	 smells	 facilitates	 the	 timely	 refactoring	
of	processes.

Projects	need	to	take	calculated	risks.	Also,	projects	need	to	re-
spond	 to	 bad	 smells	 in	 a	 timely	manner.	Good	examples	 to	 il-
lustrate	these	facts	are:	a)	Scheduling	a	training	program	on	a	
project-specific	tool	 to	enhance	the	skills	of	 team	members	for	
better	 productivity,	 and	 b)	 Improving	 the	 query	 resolution	 pro-
cess	when	there	are	pending	queries	or	too	many	communica-
tion	steps	to	resolve	a	query.	The	former	is	an	approach	towards	
risk	mitigation,	and	the	latter	is	a	response	to	a	bad	smell	that	
needs	immediate	action.	This	makes	it	evident	that	the	ability	of	
the	project	teams	to	recognize	and	respond	to	bad	smells	gives	
definite	added	value	in	Agile	projects.	It	helps	not	only	to	avoid	
certain	risks,	but	also	to	apply	continuous	improvements	to	nul-
lify	the	probability	of	mediocrity	and	hence	to	provide	predictable	
deliverables	of	high	quality.

Presented	below	is	a	set	of	ten	bad	smells	that	are	most	com-
monly	experienced	in	Distributed	Agile	Software	Development.

1. Integration Nightmare
This	occurs	when	product	integration	becomes	messy,	which	re-
sults	in	a	schedule	slippage.	As	a	result,	the	level	of	predictability	
becomes	very	low.

Integration	issues	consume	significant	effort,	especially	when	the	
code	 base	 involves	 product	modules	 undergoing	maintenance	
as	well	as	newly	developed	interdependent	modules.	Timely	pl-
anning	 and	 corrective	 actions	 are	 crucial	 to	mitigate	 delays	 in	
resolving	integration	issues.	When	an	integration	strategy	is	not	
effective	and	efficient,	the	project	quality	suffers	because	of	un-
expected	delays	in	product	integration.	Continuous	integration	is	
not	a	destination	but	a	journey.	The	strategy	to	accomplish	con-
tinuous	integration	cannot	be	the	same	for	all	types	of	project.	A	
wiser	approach	during	the	first	few	cycles	is	to	have	a	dedicated	
team	of	engineers	that	focuses	on	integration.	The	responsibility	
of	this	team	should	be	to	decide	when	to	stop	everything	else	to	
fix	 integration	 issues	as	a	priority,	and	to	ensure	that	 integrati-
on	efforts	during	subsequent	iterations	are	optimized.	Also,	it	is	

©
 w

ibaim
ages - Fotolia.com

Distributed Agile – The Most Common 
Bad Smells
by Raja Bavani



61www.agilerecord.com

essential	to	budget	for	the	integration	activity	depending	on	the	
complexity	of	the	product,	and	to	resolve	integration	issues	when	
team	members	across	sites	are	available	 for	collaboration	and	
issue	resolution.

2. The Vicious Cycle
Software	projects	encounter	this	bad	smell	when	the	number	of	
new	defects	is	on	the	rise	from	iteration	to	iteration.	Our	experi-
ence	says	that	too	much	aggression	in	catching	up	with	delivery	
requirements	results	in	quality	issues.	If	the	number	of	defects	in	
subsequent	deliveries	is	on	the	rise,	it	is	time	to	recognize	it	as	
a	bad	smell	and	respond	to	it.	Buggy	deliveries	make	the	team	
stretch	in	implementing	new	functionalities	as	well	as	fix	defects	
during	subsequent	iterations.	Distributed	development	is	prone	
to	this	syndrome.	Disciplined	personal	practices	and	continuous	
focus	on	enhancing	product	knowledge	are	critical	in	eliminating	
this	syndrome	in	Distributed	Agile	environments.

Understanding	 the	quality	of	deliveries	 in	quantitative	 terms	 is	
the	key	to	recognizing	this	bad	smell.	Periodic	quantitative	status	
checks	help	in	knowing	the	trend	of	defects	injected	in	each	de-
livery.	When	there	is	a	trend	of	growing	defects,	the	team	needs	
to	be	involved	in	analyzing	the	nature	of	defects,	finding	the	root	
causes	and	 implementing	corrective	and	preventive	measures.	
This	tends	to	lead	Agile	practitioners	towards	process	orientation	
on	an	as-needed	basis	and	provides	valuable	inputs.	

3. Uncertain Assumptions vs. Convenience
In	distributed	projects,	uncertain	assumptions	tend	to	linger	wit-
hout	any	action	on	validation	or	clarification.	Assumptions	made	
during	the	 initial	stages	of	projects	go	unnoticed	until	 the	end-
users	raise	 issues	after	final	delivery.	There	has	to	be	a	balan-
ce	 between	 ‘Uncertain	 Assumptions’	 and	 ‘Convenience’	 when	
we	 go	 Agile.	We	 need	 to	make	 certain	 uncertain	 assumptions	
to	make	progress.	However,	at	regular	intervals	we	need	to	cla-
rify	or	validate	these	assumptions	and	make	timely	corrections.	
The	impact	of	unresolved	‘Uncertain	Assumptions’	on	testing	and	
Product	Quality	could	be	 fatal.	Eventually,	 customers’	percepti-
on	of	product	quality	would	remain	negative	due	to	their	 initial	
experience	during	User	Acceptance	Testing.	Besides,	depending	
on	the	magnitude	of	such	assumptions	the	overall	product	tes-
ting	 activities	may	 have	 to	 be	 repeated	 in	 part	 or	 full	 in	 order	
to	ensure	a	successful	release.	Finally,	the	product	release	may	
not	happen	as	planned.	 In	distributed	environments	 the	 chan-
ces	of	executing	projects	with	‘Uncertain	Assumptions’	are	high-
er,	and	hence	an	additional	level	of	status	check	is	required	to	
have	 assumptions	 validated	 or	 clarified	 at	 regular	 intervals.	 In	
order	to	avoid	this	from	happening,	prepare	and	review	the	list	of	
assumptions	at	 regular	 intervals.	Also,	clarify	assumptions	and	
involve	all	relevant	stakeholders	in	this	activity.

4. Regression Tests – Tip of the Iceberg?
This	symptom	is	felt	when	the	efforts	spent	on	regression	testing	
grow	larger	than	expected	over	a	period	of	time	and	actually	be-
come	an	area	of	concern.

Agile	 practitioners	 do	 recommend	 independent	QA/Testing,	 as	
it	adds	value	 to	product	quality.	The	 incremental	growth	 in	 the	
size	 of	 regression	 testing	 is	 one	of	 the	 characteristics	 of	 Agile	
projects.	However,	in	case	of	large	projects	involving	product	de-
velopment	of	multiple	product	modules,	regression	testing	grows	
rapidly	and	consumes	significant	effort	compared	to	projects	in-
volving	development	or	maintenance	of	stand-alone	applications.	
In	one	of	our	projects	we	could	compress	the	time	required	for	
regression	 testing	by	50%	using	homegrown	automation	 tools.	
This	experience	gave	us	an	insight	into	the	need	to	increase	the	
level	of	automation	during	subsequent	iterations.	It	also	helped	
us	in	reducing	manual	testing	effort	during	release	cycles.	

Test	strategy,	test	planning	and	test	automation	are	the	key	in-
gredients	to	manage	regression	testing	effectively	and	efficiently.	
Build	regression	test	suites	and	plan	for	regression	testing	from	
the	initial	stages	of	a	project.	Leverage	test	automation	tools	to	
optimize	the	efforts	expended	on	regression	testing.

5. Stretched Query Resolution
This	happens	when	individual	interactions	stretch	over	multiple	
transactions	with	long	pending	queries.	

Timely	query	resolutions	provide	clarity	for	Agile	teams.	When	it	
comes	to	Distributed	Agile	projects,	timely	query	resolutions	be-
come	very	 crucial	due	 to	 the	geographical	 spread	of	 the	 team	
and	the	absence	of	customers	on-site	for	face-to-face	interaction	
and	query	resolution.	In	this	environment,	there	are	times	when	
team	members	start	managing	query	resolution	through	emails,	
chats	and	telephone	conversations	instead	of	using	a	centralized	
query-tracking	tool.	First	of	all,	it	is	valuable	to	use	a	centralized	
query-tracking	tool.	Next,	it	is	important	to	watch	out	for	pending	
queries	and	resolve	them	in	time.	Else,	the	team	is	forced	to	work	
with	ambiguity.	This	is	sure	to	impact	product	quality.

Perform	 status	 checks	 in	 addition	 to	 query	 tracking	 through	 a	
centralized	 query-tracking	 tool.	 Watch	 out	 for	 1-1	 interactions	
that	show	insignificant	results.	Facilitate	the	resolution	of	stret-
ched	queries	and	streamline	project	progress.

6. Ever-increasing ‘Not a Bug’ and ‘Non-Reproducible’ Defects
This	can	be	found	when	every	delivery	is	characterized	by	an	in-
creasing	number	of	‘Not	a	Bug’	(NAB)	or	‘Non-Reproducible’	(NR)	
defects.	

Identification	of	NAB	or	NR	defects	during	defect	classification	is	
a	natural	occurrence.	However,	if	the	trend	shows	a	growth	in	the	
percentage	of	NAB	or	NR	defects,	 it	 is	a	bad	smell,	as	it	would	
involve	communication	among	team	members	in	discussing	and	
confirming	the	classification	of	such	defects.	Generally,	NAB	de-
fects	indicate	the	need	to	improve	the	level	of	product	knowledge	
among	 team	members,	whilst	NR	defects	 indicate	 the	need	 to	
improve	the	thoroughness	and	perfection	in	the	testing	process.	

Reducing	the	number	of	NAB	or	NR	defects	can	be	accomplis-
hed	through	positive	reinforcement.	Setting	up	identical	testing	
environments	and	configuration	management	processes	across	



62 www.agilerecord.com

sites	 is	necessary	 to	control	 the	number	of	NR	defects.	Know-
ledge	sharing	sessions	are	essential	to	accomplish	the	reduction	
of	NAB	defects.	Periodic	visits	of	Subject	Matter	Experts	(SME)	
to	 share	 business	 requirements,	 product	 knowledge,	 product	
architecture	and	complex	test	conditions	are	essential	in	a	dis-
tributed	environment.	In	all	our	projects	we	budget	time	for	know-
ledge	 sharing	 sessions	and	 team	meetings	 to	 discuss	product	
functionality	and	 implementation	aspects.	We	encourage	 team	
members	to	ask	questions	and	get	them	resolved	on	time.	

In	order	to	recognize	and	respond	to	this	smell,	it	is	required	to	
monitor	 the	 number	 of	 defects	 that	 get	 classified	 as	 (NAB)	 or	
(NR)	and	find	the	root	causes.	Knowledge	transfer	sessions	and	
team	meetings	to	understand	the	product	requirements	and	de-
sign	help	in	reducing	the	number	of	NAB	and	NR	defects.

7. Trivial Code Quality Issues
You	smell	this	when	code	reviewers	report	trivial	code	quality	is-
sues.	

There	 are	 two	 primary	 dimensions	 of	 software	 quality,	 namely	
internal	quality	and	external	quality.	External	quality	 is	an	attri-
bute	that	relates	to	the	end-user	experience.	External	quality	can	
be	assessed	and	improved	through	defect	prevention	as	well	as	
black	box	 testing.	 Issues	 related	 to	 internal	quality	 could	pose	
serious	consequences	in	the	form	of	unexpected	naive	defects,	
technical	 issues	 and	 maintenance	 nightmares.	 Poor	 internal	
quality	encompasses	the	root	causes	for	issues	related	to	exter-
nal	 quality.	 Thus,	 in	 order	 to	 improve	 software	quality,	 internal	
quality	must	be	improved.	

Trivial	code	quality	issues	occur	due	to	various	reasons,	such	as	
a)	introduction	of	new	developers	who	do	not	understand	the	co-
ding	standards	(implicit	or	explicit)	followed	by	the	team,	or	b)	ag-
gressive	timelines	that	force	team	members	to	do	quick	fixes	and	
dirty	enhancements.	In	Agile	environments	we	build	and	empo-
wer	individuals	to	deliver	quality	results.	A	well-performing	Agile	
team	produces	consistent	results.	Whenever	there	is	a	change,	
such	as	the	introduction	of	new	team	members,	there	is	a	good	
chance	of	encountering	code	quality	 issues.	Aligning	new	team	
members	towards	writing	good	quality	code	is	very	critical.	This	is	
true	for	pair	programming,	too.	

In	 environments	 where	 pair	 programming	 is	 not	 practical,	 we	
have	seen	alternative	techniques	such	as	defect	prevention	and	
static	analysis	yield	good	results	in	improving	code	quality.

8. Inefficient QA Build
It	 is	not	a	good	sign	when	a	successful	QA	build	happens	after	
multiple	 fixes	 and	 attempts.	Multiple	 attempts	 to	make	 a	 suc-
cessful	QA	build	reduce	the	time	available	for	testing.	This	 is	a	
high-level	impact.	Besides,	delays	in	providing	a	stable	QA	build	
impacts	the	overall	mindset	of	the	team,	and	such	delays	pose	
questions	on	the	predictability	of	successful	builds.	 In	some	of	
our	projects,	we	recognized	this	smell	during	initial	deliveries.	We	
found	this	bad	smell	whenever	a	new	product	or	module	got	inte-
grated	with	the	product	suite.	Thus	this	bad	smell	was	occurring	

after	every	6	or	8	deliveries	and	would	then	disappear	again	after	
2	or	3	cycles.	We	responded	to	this	by	collecting	process	improve-
ment	ideas	from	our	leads	and	implementing	them.	

Setting	 up	 development	 and	QA	 environments	 that	 are	 similar	
in	all	technical	aspects	is	a	must	to	improve	the	predictability	of	
successful	QA	builds.	Subsequent	attention	on	product	specific	
configuration	parameters	and	seed	data	is	a	must	to	avoid	un-
expected	crashes	or	product	behavior	in	QA	environments.	In	a	
distributed	environment	 there	 is	 an	additional	 responsibility	 to	
ensure	 that	 builds	 are	made	 successfully	 in	 different	 environ-
ments	at	every	site.	Failure	to	recognize	and	respond	to	this	will	
result	 in	 the	 recurrence	of	build	 issues.	This	means	a	 trend	 in	
compressed	QA	 cycles	and	hence	a	 job	not	well	 done	when	 it	
comes	to	assuring	quality.

Automating	 the	 build	 process	 and	 ensuring	 that	 development	
and	QA	environments	are	similar	is	essential.	Also,	it	is	very	im-
portant	 to	 set	 up	 development	 and	 QA	 environments	 with	 the	
right	kind	of	seed	data	and	configuration	parameters.

9. No Issues or Feedback from Customer
It	is	definitely	a	bad	smell	when	customers	do	not	report	issues	
or	provide	feedback	during	initial	 iterations.	In	such	cases,	it	 is	
highly	possible	that	there	will	be	a	considerable	number	of	issues	
or	feedback	that	may	only	surface	during	subsequent	iterations.

Providing	 early	 and	 frequent	delivery	 of	working	 software	 is	 at	
the	heart	of	Agile	projects,	and	so	is	obtaining	early	and	frequent	
feedback	 from	customers.	Lack	of	attention	on	either	of	 these	
would	increase	the	risk	of	receiving	disappointing	results.	For	ex-
ample,	in	a	bimonthly	delivery	model	with	a	product	release	cycle	
of	12	weeks,	 any	 slippage	 in	 the	 feedback	process	during	 the	
first	few	deliveries	will	result	in	multiple	issues	during	the	rest	of	
the	development	process.

Early	and	frequent	deliveries	facilitate	customers	in	understan-
ding	the	product	behavior	in	addition	to	ensuring	the	integrity	of	
build	and	deployment.	In	our	experience	we	got	prompt	feedback	
from	 our	 customers	 on	 the	 integrity	 of	 builds	 and	 deployment	
processes	with	respect	to	each	delivery.	However,	obtaining	feed-
back	on	product	functionality	was	a	challenging	task	for	us	in	an	
aggressive	product	development	environment.	We	collaborated	
with	 our	 customers	 in	 working	 towards	 obtaining	 timely	 feed-
back.	Our	 customer	organized	product	 demos	 for	 some	of	 the	
critical	deliveries	and	provided	us	feedback.	In	addition	to	this,	
product	owners	invested	time	in	exploring	the	product	and	provi-
ded	us	their	feedback.

Collaboration	 is	essential	 in	order	 to	respond	to	 this	smell.	Ab-
sence	of	issues	during	initial	deliveries	is	the	symptom	and	cus-
tomer	collaboration	to	facilitate	feedback	right	from	early	stages	
is	the	solution.	It	is	paramount	to	collaborate	with	the	customer	
in	getting	substantial	feedback	from	the	early	stages	of	the	deve-
lopment	process	for	continuous	improvement.



63www.agilerecord.com

Raja Bavani
heads delivery for 
MindTree’s Software Pro-
duct Engineering (SPE) 
group in Pune and also 
plays the role of Software 
Product Engineering (SPE) 
evangelist. He has more 
than 20 years of expe-
rience in the IT industry 
and has published papers 

at international conferences on topics related to code 
quality, distributed agile, customer value management 
and software estimation. His SPE experience started 
during the early 90s, when he was involved in porting 
a leading ERP product across various UNIX platforms. 
Later he moved onto products that involved data mining 
and master data management. During early 2000, he 
worked with some of the niche independent software 
vendors in the hospitality and finance domains. At 
MindTree, he worked with project teams that executed 
SPE services for some of the top vendors of virtualiza-
tion platforms, business service management solutions 
and health care products. His other areas of interests 
include global delivery model, requirement engineering, 
software architecture, software reuse, customer value 
management, knowledge management, and IT out-
sourcing. He regularly interfaces with educational ins-
titutions to offer guest lectures and writes for technical 
conferences. His SPE blog is available at http://www.
mindtree.com/blogs/category/software-product-engi-
neering. He can be reached at raja_bavani@mindtree.
com.

> About the author
10. No Exploratory Testing or Investigation
Typically,	 project	 teams	 follow	 the	 traditional	 way	 of	 test-case-
based	testing	and	do	not	find	time	for	exploration	or	 investiga-
tion.	In	such	cases	this	bad	smell	can	be	seen	when	tricky	and	
hard-to-find	defects	are	reported	during	product	demos	by	cus-
tomers.

Agile	teams	need	to	explore	and	investigate	the	product	that	they	
build	or	test.	Focusing	on	user	stories	or	customer	requirements	
during	 the	 initial	deliveries	will	be	good	enough	 to	ensure	ear-
ly	and	frequent	deliveries.	As	the	team	continues	to	accomplish	
development	and	maintenance	of	multiple	products	or	product	
modules	 over	 several	 months,	 exploration	 and	 investigation	
are	 required	 to	manage	 the	product	better	 in	 terms	of	mainte-
nance,	 new	 development	 as	 well	 as	 QA/testing.	 To	 do	 this,	 a	
shift	 from	an	 ‘iteration-based’	 focus	 to	a	 ‘release-based’	 focus	
on	development	 and	 testing	 is	 necessary.	We	 collaborate	with	
our	customers	in	obtaining	a	broader	view	that	provides	visibility	
of	multiple	releases	over	several	months.	This	makes	our	team	
understand	the	nature	and	timelines	of	impending	releases	and	
perform	investigation	and	exploration	on	a	broader	perspective.	
With	this	awareness	we	leverage	our	efforts	in	exploring	the	pro-
duct	or	investigating	issues	with	a	broader	perspective.

Any	approach	to	development,	debugging	or	QA/testing	will	not	
yield	results	 if	 it	 lacks	exploration	and	 investigation.	Large	pro-
jects	 that	 involve	 software	 product	 development	 will	 suffer	 if	
there	is	no	stress	on	exploratory	testing	or	investigation.	It	is	es-
sential	to	build	a	culture	of	exploration	and	investigation	and	let	
the	team	members	understand	the	product	from	the	end-user’s	
point-of-view.	Establishing	a	broader	perspective	of	the	develop-
ment	and	 release	 requirements	 to	 the	 team	and	shifting	away	
from	an	‘iteration-based’	approach	to	development	or	testing	is	a	
must	to	open	up	avenues	for	exploration.

Conclusion
A	methodology	that	embraces	Agile	practices	for	software	deve-
lopment	is	not	the	panacea	to	ensure	on-time	and	quality	delive-
rables.	A	great	deal	of	conscious	monitoring	is	required	to	exploit	
the	benefits	of	Agile	practices,	especially	in	distributed	or	virtual	
teams.	Generalizing	these	bad	smells	and	deriving	best	practices	
is	not	justifiable	as	many	of	them	are	project	specific.	However,	
some	of	the	bad	smells	discussed	in	this	article	may	provide	in-
sights	on	how	to	handle	similar	situations	in	software	projects.	In	
our	experience,	all	of	these	bad	smells	provided	us	with	a	reassu-
rance	of	the	importance	of	disciplined	personal	practices,	defect	
prevention,	 internal	quality,	 knowledge	sharing,	 status	 reviews,	
test	automation,	rigorous	query	resolution,	customer	feedback,	
exploratory	testing	and	investigation.	■


