
The Magazine for Agile Developers and Agile Testers

© iStockphoto.com/ThomasVogel

January 2011

issue 5www.agilerecord.com	 free digital version	 made in Germany	 ISSN 2191-1320

60 www.agilerecord.com

In the programming world, the term ‘bad smell’ refers to nega-
tive characteristics of code that could adversely impact design
and code quality. Refactoring is a disciplined technique for re-
structuring an existing body of code, altering its internal struc-
ture without changing its external behavior. Its heart is a series of
small behavior preserving transformations. Refactoring improves
the quality of design and code. In a broader context, software
development and testing life cycles do signal bad smells or ne-
gative characteristics from time to time, and from project to pro-
ject. Recognizing such bad smells and responding to them at the
right time is essential to keeping projects on track. In our expe-
rience, Distributed Agile Software Development projects involve
many nuances that could result in tricky situations that impact
the satisfaction levels of stakeholders. Refactoring of life-cycle
processes is necessary to tune the delivery engine towards deli-
vering quality products. This is not a one-time activity. It needs to
happen continuously at regular intervals, and the way it is done
can differ from project to project.

Risks and Bad Smells
Risks are uncertainties that could affect project performance ad-
versely. For example, a risk could impact project costs (because
of slipping schedules or effort variance) or affect the quality of
deliverables and reduce customer satisfaction. In most cases
risks are identified before they occur. On the other hand, bad
smells are felt or experienced in real-time. They are an indica-
tion of project risks or greater probability of producing mediocre
results. Mediocre results attributed to average quality gradually
become an unexpected bottleneck during the product life cycle.
For instance, mediocre results could impact a business critical
situation related to product release or migration. This can be avo-
ided if we recognize and fine-tune the corresponding processes
and also apply corrective actions. Any causative process that re-
lates to a bad smell is a candidate for refactoring. Recognizing
and responding to bad smells facilitates the timely refactoring
of processes.

Projects need to take calculated risks. Also, projects need to re-
spond to bad smells in a timely manner. Good examples to il-
lustrate these facts are: a) Scheduling a training program on a
project-specific tool to enhance the skills of team members for
better productivity, and b) Improving the query resolution pro-
cess when there are pending queries or too many communica-
tion steps to resolve a query. The former is an approach towards
risk mitigation, and the latter is a response to a bad smell that
needs immediate action. This makes it evident that the ability of
the project teams to recognize and respond to bad smells gives
definite added value in Agile projects. It helps not only to avoid
certain risks, but also to apply continuous improvements to nul-
lify the probability of mediocrity and hence to provide predictable
deliverables of high quality.

Presented below is a set of ten bad smells that are most com-
monly experienced in Distributed Agile Software Development.

1.	 Integration Nightmare
This occurs when product integration becomes messy, which re-
sults in a schedule slippage. As a result, the level of predictability
becomes very low.

Integration issues consume significant effort, especially when the
code base involves product modules undergoing maintenance
as well as newly developed interdependent modules. Timely pl-
anning and corrective actions are crucial to mitigate delays in
resolving integration issues. When an integration strategy is not
effective and efficient, the project quality suffers because of un-
expected delays in product integration. Continuous integration is
not a destination but a journey. The strategy to accomplish con-
tinuous integration cannot be the same for all types of project. A
wiser approach during the first few cycles is to have a dedicated
team of engineers that focuses on integration. The responsibility
of this team should be to decide when to stop everything else to
fix integration issues as a priority, and to ensure that integrati-
on efforts during subsequent iterations are optimized. Also, it is

©
 w

ibaim
ages - Fotolia.com

Distributed Agile – The Most Common
Bad Smells
by Raja Bavani

61www.agilerecord.com

essential to budget for the integration activity depending on the
complexity of the product, and to resolve integration issues when
team members across sites are available for collaboration and
issue resolution.

2.	 The Vicious Cycle
Software projects encounter this bad smell when the number of
new defects is on the rise from iteration to iteration. Our experi-
ence says that too much aggression in catching up with delivery
requirements results in quality issues. If the number of defects in
subsequent deliveries is on the rise, it is time to recognize it as
a bad smell and respond to it. Buggy deliveries make the team
stretch in implementing new functionalities as well as fix defects
during subsequent iterations. Distributed development is prone
to this syndrome. Disciplined personal practices and continuous
focus on enhancing product knowledge are critical in eliminating
this syndrome in Distributed Agile environments.

Understanding the quality of deliveries in quantitative terms is
the key to recognizing this bad smell. Periodic quantitative status
checks help in knowing the trend of defects injected in each de-
livery. When there is a trend of growing defects, the team needs
to be involved in analyzing the nature of defects, finding the root
causes and implementing corrective and preventive measures.
This tends to lead Agile practitioners towards process orientation
on an as-needed basis and provides valuable inputs.

3.	 Uncertain Assumptions vs. Convenience
In distributed projects, uncertain assumptions tend to linger wit-
hout any action on validation or clarification. Assumptions made
during the initial stages of projects go unnoticed until the end-
users raise issues after final delivery. There has to be a balan-
ce between ‘Uncertain Assumptions’ and ‘Convenience’ when
we go Agile. We need to make certain uncertain assumptions
to make progress. However, at regular intervals we need to cla-
rify or validate these assumptions and make timely corrections.
The impact of unresolved ‘Uncertain Assumptions’ on testing and
Product Quality could be fatal. Eventually, customers’ percepti-
on of product quality would remain negative due to their initial
experience during User Acceptance Testing. Besides, depending
on the magnitude of such assumptions the overall product tes-
ting activities may have to be repeated in part or full in order
to ensure a successful release. Finally, the product release may
not happen as planned. In distributed environments the chan-
ces of executing projects with ‘Uncertain Assumptions’ are high-
er, and hence an additional level of status check is required to
have assumptions validated or clarified at regular intervals. In
order to avoid this from happening, prepare and review the list of
assumptions at regular intervals. Also, clarify assumptions and
involve all relevant stakeholders in this activity.

4.	 Regression Tests – Tip of the Iceberg?
This symptom is felt when the efforts spent on regression testing
grow larger than expected over a period of time and actually be-
come an area of concern.

Agile practitioners do recommend independent QA/Testing, as
it adds value to product quality. The incremental growth in the
size of regression testing is one of the characteristics of Agile
projects. However, in case of large projects involving product de-
velopment of multiple product modules, regression testing grows
rapidly and consumes significant effort compared to projects in-
volving development or maintenance of stand-alone applications.
In one of our projects we could compress the time required for
regression testing by 50% using homegrown automation tools.
This experience gave us an insight into the need to increase the
level of automation during subsequent iterations. It also helped
us in reducing manual testing effort during release cycles.

Test strategy, test planning and test automation are the key in-
gredients to manage regression testing effectively and efficiently.
Build regression test suites and plan for regression testing from
the initial stages of a project. Leverage test automation tools to
optimize the efforts expended on regression testing.

5.	 Stretched Query Resolution
This happens when individual interactions stretch over multiple
transactions with long pending queries.

Timely query resolutions provide clarity for Agile teams. When it
comes to Distributed Agile projects, timely query resolutions be-
come very crucial due to the geographical spread of the team
and the absence of customers on-site for face-to-face interaction
and query resolution. In this environment, there are times when
team members start managing query resolution through emails,
chats and telephone conversations instead of using a centralized
query-tracking tool. First of all, it is valuable to use a centralized
query-tracking tool. Next, it is important to watch out for pending
queries and resolve them in time. Else, the team is forced to work
with ambiguity. This is sure to impact product quality.

Perform status checks in addition to query tracking through a
centralized query-tracking tool. Watch out for 1-1 interactions
that show insignificant results. Facilitate the resolution of stret-
ched queries and streamline project progress.

6.	 Ever-increasing ‘Not a Bug’ and ‘Non-Reproducible’ Defects
This can be found when every delivery is characterized by an in-
creasing number of ‘Not a Bug’ (NAB) or ‘Non-Reproducible’ (NR)
defects.

Identification of NAB or NR defects during defect classification is
a natural occurrence. However, if the trend shows a growth in the
percentage of NAB or NR defects, it is a bad smell, as it would
involve communication among team members in discussing and
confirming the classification of such defects. Generally, NAB de-
fects indicate the need to improve the level of product knowledge
among team members, whilst NR defects indicate the need to
improve the thoroughness and perfection in the testing process.

Reducing the number of NAB or NR defects can be accomplis-
hed through positive reinforcement. Setting up identical testing
environments and configuration management processes across

62 www.agilerecord.com

sites is necessary to control the number of NR defects. Know-
ledge sharing sessions are essential to accomplish the reduction
of NAB defects. Periodic visits of Subject Matter Experts (SME)
to share business requirements, product knowledge, product
architecture and complex test conditions are essential in a dis-
tributed environment. In all our projects we budget time for know-
ledge sharing sessions and team meetings to discuss product
functionality and implementation aspects. We encourage team
members to ask questions and get them resolved on time.

In order to recognize and respond to this smell, it is required to
monitor the number of defects that get classified as (NAB) or
(NR) and find the root causes. Knowledge transfer sessions and
team meetings to understand the product requirements and de-
sign help in reducing the number of NAB and NR defects.

7.	 Trivial Code Quality Issues
You smell this when code reviewers report trivial code quality is-
sues.

There are two primary dimensions of software quality, namely
internal quality and external quality. External quality is an attri-
bute that relates to the end-user experience. External quality can
be assessed and improved through defect prevention as well as
black box testing. Issues related to internal quality could pose
serious consequences in the form of unexpected naive defects,
technical issues and maintenance nightmares. Poor internal
quality encompasses the root causes for issues related to exter-
nal quality. Thus, in order to improve software quality, internal
quality must be improved.

Trivial code quality issues occur due to various reasons, such as
a) introduction of new developers who do not understand the co-
ding standards (implicit or explicit) followed by the team, or b) ag-
gressive timelines that force team members to do quick fixes and
dirty enhancements. In Agile environments we build and empo-
wer individuals to deliver quality results. A well-performing Agile
team produces consistent results. Whenever there is a change,
such as the introduction of new team members, there is a good
chance of encountering code quality issues. Aligning new team
members towards writing good quality code is very critical. This is
true for pair programming, too.

In environments where pair programming is not practical, we
have seen alternative techniques such as defect prevention and
static analysis yield good results in improving code quality.

8.	 Inefficient QA Build
It is not a good sign when a successful QA build happens after
multiple fixes and attempts. Multiple attempts to make a suc-
cessful QA build reduce the time available for testing. This is a
high-level impact. Besides, delays in providing a stable QA build
impacts the overall mindset of the team, and such delays pose
questions on the predictability of successful builds. In some of
our projects, we recognized this smell during initial deliveries. We
found this bad smell whenever a new product or module got inte-
grated with the product suite. Thus this bad smell was occurring

after every 6 or 8 deliveries and would then disappear again after
2 or 3 cycles. We responded to this by collecting process improve-
ment ideas from our leads and implementing them.

Setting up development and QA environments that are similar
in all technical aspects is a must to improve the predictability of
successful QA builds. Subsequent attention on product specific
configuration parameters and seed data is a must to avoid un-
expected crashes or product behavior in QA environments. In a
distributed environment there is an additional responsibility to
ensure that builds are made successfully in different environ-
ments at every site. Failure to recognize and respond to this will
result in the recurrence of build issues. This means a trend in
compressed QA cycles and hence a job not well done when it
comes to assuring quality.

Automating the build process and ensuring that development
and QA environments are similar is essential. Also, it is very im-
portant to set up development and QA environments with the
right kind of seed data and configuration parameters.

9.	 No Issues or Feedback from Customer
It is definitely a bad smell when customers do not report issues
or provide feedback during initial iterations. In such cases, it is
highly possible that there will be a considerable number of issues
or feedback that may only surface during subsequent iterations.

Providing early and frequent delivery of working software is at
the heart of Agile projects, and so is obtaining early and frequent
feedback from customers. Lack of attention on either of these
would increase the risk of receiving disappointing results. For ex-
ample, in a bimonthly delivery model with a product release cycle
of 12 weeks, any slippage in the feedback process during the
first few deliveries will result in multiple issues during the rest of
the development process.

Early and frequent deliveries facilitate customers in understan-
ding the product behavior in addition to ensuring the integrity of
build and deployment. In our experience we got prompt feedback
from our customers on the integrity of builds and deployment
processes with respect to each delivery. However, obtaining feed-
back on product functionality was a challenging task for us in an
aggressive product development environment. We collaborated
with our customers in working towards obtaining timely feed-
back. Our customer organized product demos for some of the
critical deliveries and provided us feedback. In addition to this,
product owners invested time in exploring the product and provi-
ded us their feedback.

Collaboration is essential in order to respond to this smell. Ab-
sence of issues during initial deliveries is the symptom and cus-
tomer collaboration to facilitate feedback right from early stages
is the solution. It is paramount to collaborate with the customer
in getting substantial feedback from the early stages of the deve-
lopment process for continuous improvement.

63www.agilerecord.com

Raja Bavani
heads delivery for
MindTree’s Software Pro-
duct Engineering (SPE)
group in Pune and also
plays the role of Software
Product Engineering (SPE)
evangelist. He has more
than 20 years of expe-
rience in the IT industry
and has published papers

at international conferences on topics related to code
quality, distributed agile, customer value management
and software estimation. His SPE experience started
during the early 90s, when he was involved in porting
a leading ERP product across various UNIX platforms.
Later he moved onto products that involved data mining
and master data management. During early 2000, he
worked with some of the niche independent software
vendors in the hospitality and finance domains. At
MindTree, he worked with project teams that executed
SPE services for some of the top vendors of virtualiza-
tion platforms, business service management solutions
and health care products. His other areas of interests
include global delivery model, requirement engineering,
software architecture, software reuse, customer value
management, knowledge management, and IT out-
sourcing. He regularly interfaces with educational ins-
titutions to offer guest lectures and writes for technical
conferences. His SPE blog is available at http://www.
mindtree.com/blogs/category/software-product-engi-
neering. He can be reached at raja_bavani@mindtree.
com.

> About the author
10.	 No Exploratory Testing or Investigation
Typically, project teams follow the traditional way of test-case-
based testing and do not find time for exploration or investiga-
tion. In such cases this bad smell can be seen when tricky and
hard-to-find defects are reported during product demos by cus-
tomers.

Agile teams need to explore and investigate the product that they
build or test. Focusing on user stories or customer requirements
during the initial deliveries will be good enough to ensure ear-
ly and frequent deliveries. As the team continues to accomplish
development and maintenance of multiple products or product
modules over several months, exploration and investigation
are required to manage the product better in terms of mainte-
nance, new development as well as QA/testing. To do this, a
shift from an ‘iteration-based’ focus to a ‘release-based’ focus
on development and testing is necessary. We collaborate with
our customers in obtaining a broader view that provides visibility
of multiple releases over several months. This makes our team
understand the nature and timelines of impending releases and
perform investigation and exploration on a broader perspective.
With this awareness we leverage our efforts in exploring the pro-
duct or investigating issues with a broader perspective.

Any approach to development, debugging or QA/testing will not
yield results if it lacks exploration and investigation. Large pro-
jects that involve software product development will suffer if
there is no stress on exploratory testing or investigation. It is es-
sential to build a culture of exploration and investigation and let
the team members understand the product from the end-user’s
point-of-view. Establishing a broader perspective of the develop-
ment and release requirements to the team and shifting away
from an ‘iteration-based’ approach to development or testing is a
must to open up avenues for exploration.

Conclusion
A methodology that embraces Agile practices for software deve-
lopment is not the panacea to ensure on-time and quality delive-
rables. A great deal of conscious monitoring is required to exploit
the benefits of Agile practices, especially in distributed or virtual
teams. Generalizing these bad smells and deriving best practices
is not justifiable as many of them are project specific. However,
some of the bad smells discussed in this article may provide in-
sights on how to handle similar situations in software projects. In
our experience, all of these bad smells provided us with a reassu-
rance of the importance of disciplined personal practices, defect
prevention, internal quality, knowledge sharing, status reviews,
test automation, rigorous query resolution, customer feedback,
exploratory testing and investigation. ■

