
Customized web
crawling using Heritrix

WHITE PAPER

White paper 02

Contents
Problem statement

High level solution

Detailed solution

Business benefits

Summary

References

03

05

06

08

08

08

Summary
Quite a few businesses today need to crawl other websites and extract information. For example, deals website crawl

prospective websites and collate all the deals available, price comparison websites crawl other websites to collect

pricing details, social sentiment analysis websites crawl the web to discover opinions about certain brands and then

extract information and so on.

There are a range of web crawlers available in the market today. These products do an all-out crawling i.e. they start

with the home page, extract all links in the home page and then inturn crawl those pages. This continues till all the links

within the current website are done. This does not work in some scenarios because businesses just want to extract

some selective information from some selective pages. Identification of the required pages and extraction of selective

content are the challenging tasks.

In this approach paper we will delve deeper into multiple aspects of customized web crawling and list the feature

requirement from the crawler. We will then do gap analysis of features required and available in out of the box Heritrix

crawler. After that, we will detail out the possible Design and Architecture changes in Heritrix to enable customized web

crawling. It aims to educate the user of the problem and suggest one possible way of solving it. In order to understand

the problem and the suggested solution in this paper, the reader is expected to have some information about web

crawlers in general and know Heritrix in particular. This paper does provide references to external useful reading

material as suitable.

White paper 03

Problem statement
Let’s understand the need for customized crawling using

an example. The business requirement is to get all the

product information from a fictitious e-commerce website

called www.ecommercewebsite.com. Here are the few

detailed requirements / challenges that come under three

broad categories:

1.	 The web crawler should collect information about all

products on this website

2.	 Product information will include

 Product name

 Product short description

 Product long description

 Download product images – Thumbnail and others

 Product pricing

 Product category – For example women’s shoes

 Any promotions deals like – USD five off, buy three get

 one free and so on

3.	 The crawler should then pass on this information to

another system over web service calls

Now let’s superimpose these to standard out of the box

features for any web crawler. We will pivot all our discussion

around Heritrix, but majority of it will be true for other

crawlers too.

The block diagram of the end system will be as depicted in

figure 1.

Heritrix is the Internet Archive’s open-source, extensible,

web-scale, archival-quality web crawler project. For more

details, please visit http://crawler.archive.org/index.html.

The business requirements translate to following technical

requirements, which are more focused with customized

crawling and not with basic crawling (for more details refer

Reference[1]). In the below section we will look at the

technical requirement and also map those on to Heritrix

http:// Web service serverCustomized web crawler

Heritrix

Figure 1 – Customized web crawling using Heritrix system block diagram

Technical requirement OOTB Heritrix feature Identified gap

Crawler should be scalable and

should be able to crawl multiple

websites at once.

Heritrix crawler has configurable toe

threads and can be configured to

crawl numerous websites in parallel.

Default to threads is 50.

None.

Crawler should be configurable to

crawl only certain url patterns and

ignore the rest. This can be used to

do focused crawling.

Heritrix does provide a bit of

url filtering based on regular

expressions, but it’s not very

effective. It is buggy and is

very complex.

Home grown solution needs to be

put in to have effective url filtering.

Crawler should identify duplicate

url’s and not recrawl them.

Additional requirement is that

dedupe should not be only with url

string comparison as at times the

url parameters sequence is changed

but its a duplicate logical url.

Basic URL string dedupe is there,

but the advanced requirement is

not fulfilled.

Home grown solution needs to be

put in.

White paper

Based on the above table, we conclude that although

Heritrix is a very good web crawler, it does not satisfy

quite a few requirements for customized web crawling.

Hence an add-on wrapper solution needs to be

built around Heritrix to make it satisfy the above business

and technical requirements.

In further sections we will study in detail one such

suggested way to do the same.

04

Crawler should be able to extract

selective information from the web

page and pass it on to a web service.

No such feature exists in Heritrix. At

best Heritrix can be used to dump

the web page content and then write

additional code to do the extraction

and then web service posting. But

this results in time lag for writing the

page and then reading it.

Home grown solution needs to be

put in.

The sequence of the parameters

to the web service and how and

where to pick them from the web

page should be configurable.

No such feature available in Heritrix. Home grown solution needs to be

put in.

For web service parameters, string

manipulation such as concatenation

should be possible.

No such feature available in Heritrix. Home grown solution needs to be

put in.

Crawler should have memory across

pages. For example the category

name is available in the previous

page but needs to be remembered

in the product catalog page and then

product details page.

Heritrix is complete stateless and has

no memory across pages.

Home grown solution needs to be

put in.

Crawler should be able to download

the product images and pass those to

the web service.

Heritrix can be configured to

download images, but there is no

way to remember which product

the image is for. Also passing on the

image to the web services feature

is not .

Home grown solution requirement.

White paper 05

Web administrative console

URI work
queues

URI work
queues

URl work

queues

Crawl order

Already

included

URLs

Prefetch chain

�� Preselector

�� Precondition enforcer

Extractor chain

�� Preselector

�� Precondition enforcer

Post process chain

�� Crawl state updater

�� Post selector

Fetch chain

�� Fetch DNS

�� Fetch HTTP

Write chain

�� ARC write processor

Toe threadsFrontier

Schedule (URL)

Finished (crawl URL)

Next (crawl URL)

Server cache

Scope

Please refer to items in reference[1, 2 and 3] for detailed

description of the above architecture diagram in figure 2

and its sub components. We are mainly interested in the

processing chain components. These components are

called in a predefined sequence to process each URL. Below

is a brief description of each sub component in the chain.

�� Prefetch chain _ responsible for investigating if the URL

could be crawled at this point. That includes checking if

all preconditions are met (DNS-lookup, fetching robots,

text, authentication)

�� Fetch chain – processors in this chain are responsible for

getting the data from the remote server

Figure – 2 Heritrix basic architecture – Reference [2]

�� Extractor chain – Process the HTML page. Typical

functionality is to fetch new links from the web page and

feed that back to the frontier

�� Write chain – Writing data to the archive

�� Postprocess chain – Do ‘clean up’ and return control to

the frontier

This paper suggests putting our home grown logic in the

extractor chain. We will write our home grown extractor

which will carry out the custom tasks. Below is the block

diagram of our custom extractor (figure 3).

High level solution
We will start with a brief description of Heritrix and then delve deeper on the suggested solution. Below is the Heritrix basic

architecture diagram.

White paper 06

Custom extractor
configuration file / s Custom extractor

engine
Custom extractor

temporary storage

Custom extractor

 Figure 3 – Custom extractor block diagram

A custom extractor will extend the basic Heritrix extractor

interface and will have add-on logic as required. In addition

it will have a temporary storage which will store data

which needs to be carried across page crawls. This custom

extractor will be configured using a configuration file. The

site specific configuration will be stored in this file and will

be used at run time.

Detailed solution
We will first discuss the overall design and settings for

Heritrix and then delve deeper in the custom extractor.

Overall settings for Heritrix

1.	 Heritrix’s job is to have the overall settings and have

seed url’s for the websites to be crawled. One job per

website can be created or multiple websites can also

be combined in a job. Seed url could be the home page

or also the sub page if only certain data needs to be

extracted. For example, if only products in certain

categories are to be extracted then seed url could

be that category’s home page.

2.	 Create a custom extractor and register it in Heritrix. The

job should have this extractor in the processing chain to

be configured using the admin console.

3.	 All across the website, settings like number of toe

threads, time out values and so on are to be done at job

level. No website specific settings are to be done at

job level. This way same Heritrix job file (order.xml) can

be used across website crawls.

4.	 Rest use Heritrix standard job settings.

Apart from the custom extractor, no other code changes

are required in Heritrix. The below design can be applied

to all types of extractors. For example, HTMLExtractor,

XMLExtractor, JSONExtractor and so on. Ideally the code

should be written as stand-alone utilities which can be

called from above listed extractors.

Custom extractor design

1.	 Custom extractor engine – This will extend the default

Heritrix extractor and will overwrite methods as

required. This will be the heart of the system and

will read the configuration file and crawl websites as

instructed in the configuration. It will also interface

with a temporary storage. The features of the engine

can be deduced from the configuration file settings. The

engine should orchestrate and implement the features

described in the configuration file.

2.	 Custom extractor temporary storage – This is in principal

a hash map which will store certain values which need

to be remembered across pages. There will be a page

which stores in the hash map (source page) and there

will be another page which will extract this information

and use it (target page) in some way. The source page

will store the information in the storage with the key

as the ‘Target page url’_’key name’, for example www.

theecommercestore.com\product1234_categoryId

wherein categoryId is the key prefixed by the url. The

target page will use its own url and the known key name

to extract the information and use it as suitable.

3.	 Image extraction – Additional logic can be put in the

engine to extract the images and feed them to the

web services. Even the frontier can be used to do the

extraction of these images or custom code can be

used for the same. Custom code will be preferred as

it can be called from the extractor itself and no more

hooks needs to put in to Heritrix.

4.	 Configuration file – This file will orchestrate the

engine and carry out the crawl for each website. The

file will have sections for each website. Below are

few suggested snippets of the configuration file which

we will discuss further.

White paper

Non-leaf pages

Below snippet is for the non-leaf pages i.e. pages for which

further page crawling is required. For example. in the

e-commerce context the product detail page is the leaf

page and anything before it in the hierarchy is the

non-leaf page.

1.	 For every seed url, Heritrix will fetch the content and

will fetch all the url’s from the webpage. Our custom

code needs to filter out which url’s we add back to the

frontier, which ones we neglect, the ones we add back

to frontier, what extra processing we do.

2.	 As shown in the above config file, each url fetched will

be put to test with a regular expression. Only if the regex

matches, the url will be fed back to frontier. Else it will

be neglected. This will filter out the unrequired pages.

3.	 For the pages we want to crawl, there might be some

data which needs to page from this source page to the

target page. For example, this page could be the catalog

page for a certain category and this category name / id

Leaf pages

Below snippet is for leaf pages, i.e. pages which extract

actual information and pass it using web service.

�� The url regex is described above.

�� The data extraction has a new attribute called ‘use-for-

webservice’, which will tell the system to extract the

data-xpath elements and use it for a webservice call..

�� The data-xpath are similar to the above defined.

Additionally there is one new type of xpath called

‘memory’. This will tell the system to pick up that

variable from the extractor hash map.

	

	

needs to be passed to the product page because it needs

to be in the web service. This data could come either

from the source page url (url parameters) or from the

html page. Above snippet shows the two cases.

 The first case has xpath=’url’ added the parameter name

 as categoryId. This will extract this parameter from the

 source url and add it to the temporary storage with

 the ‘target url_parameter name’ format.

 The second case is when the data is to be picked from

 the HTML content using xpath. The system will extract

 the content using xpath. In case the data needs to be

 further scrubbed then addition regex can be used. For

 example, the deals data could come in various formats like

 ‘buy two get one free’, USD five off on purchase

 above USD 50 and so on. For such cases additional

 data filters can be provided which will be in a

 particular sequence. The engine will start matching

 from the top and whichever pattern matches, the

 output format will be used to create the output string

 and add it to the temporary storage.

�� At the end, the webservice name is specified. System

will call this webservice with the parameters extracted

in the data extraction. The sequence and source of the

parameters is defined in the data extraction.

�� The above design elements will permit us to fulfill all

the business and technical requirements stated in

section 1. These changes will successfully customize

Heritrix with minimal changes to core engine and yet

fulfill all requirements.

07

White paper

Business benefits
Such a tool can be used by businesses to extract selective

info from other websites and use this aggregated

information for multiple purposes. For example:

�� Aggregate deals catalog – Deals websites crawl other

websites and extract product and deals information and

serve it to end customers as an aggregate deals catalog.

�� Mine social sentiment – This engine can be used for the

discovery part of social mining to discover and extract

opinion data from the web.

Businesses can then use this information in multiple ways

and benefit from them.

Summary
This paper has presented one solution for customized

web crawling using Heritrix. It starts with appreciating the

problem and then provides details on the design of the

possible changes required for the same. This should give a

jump start to anybody who wants to understand

the concept of customized web crawling and implement

the same.

Item Description

Heritrix home page http://crawler.archive.org/index.html

Adaptive_Revisiting_with_Heritrix_-_Thesis http://skemman.is/stream/get/1946/2071/6500/1/Adaptive_Revisiting_

with_Heritrix_-_Thesis.pdf

Heritrix developer manual http://crawler.archive.org/articles/developer_manual/overview.html

About Mindtree
Mindtree is a global information technology solutions company with revenues of over USD 430 million. Our team of 12,000+ experts
engineer meaningful technology solutions to help businesses and societies flourish. We enable our customers to achieve competitive
advantage through flexible and global delivery models, agile methodologies and expert frameworks.

08

About the author:

Deepak Garg is a Technical Director at Mindtree and is a part of the Solutioning and Consulting Lead Engagements

team. He has more than 14 years of rich experience in the IT industry across various domains like telecom / new media

/ eCommerce / retail / social and so on. Deepak has worked in a wide range of roles in the said domains in positions

including Senior Architect, Sales, Pre-Sales, Consulting, Solutioning and Delivery.

References:

